35 research outputs found

    Discrete cytosolic macromolecular BRAF complexes exhibit distinct activities and composition

    Get PDF
    As a central element within the RAS/ERK pathway, the serine/threonine kinase BRAF plays a key role in development and homeostasis and represents the most frequently mutated kinase in tumors. Consequently, it has emerged as an important therapeutic target in various malignancies. Nevertheless, the BRAF activation cycle still raises many mechanistic questions as illustrated by the paradoxical action and side effects of RAF inhibitors. By applying SEC‐PCP‐SILAC, we analyzed protein–protein interactions of hyperactive BRAFV600E and wild‐type BRAF (BRAFWT). We identified two macromolecular, cytosolic BRAF complexes of distinct molecular composition and phosphorylation status. Hyperactive BRAFV600E resides in large complexes of higher molecular mass and activity, while BRAFWT is confined to smaller, slightly less active complexes. However, expression of oncogenic K‐RasG12V, either by itself or in combination with RAF dimer promoting inhibitors, induces the incorporation of BRAFWT into large, active complexes, whereas pharmacological inhibition of BRAFV600E has the opposite effect. Thus, the quaternary structure of BRAF complexes is shaped by its activation status, the conformation of its kinase domain, and clinically relevant inhibitors

    Inhibition of β-catenin signaling by phenobarbital in hepatoma cells in vitro

    Get PDF
    The antiepileptic drug phenobarbital (PB) exerts hepatic effect based on indirect activation of the constitutive androstane receptor (CAR) via inhibition of the epidermal growth factor receptor (EGFR) and the kinase Src. It has furthermore been observed that in mice PB suppresses the growth of hepatocellular carcinoma with overactive signaling through the oncogenic Wnt/β-catenin pathway, thus suggesting an interference of PB with β-catenin signaling. The present work was aimed to characterize effects of PB on β-catenin signaling at different cellular levels and to elucidate molecular details of the interaction of PB and β-catenin in an in vitro system of mouse hepatoma cells. PB efficiently inhibited signaling through β-catenin. This phenomenon was in-depth characterized at the levels of β-catenin protein accumulation and transcriptional activity. Mechanistic analyses revealed that the effect of PB on β-catenin signaling was independent of the activation of CAR and also independent of the cytosolic multi-protein complex responsible for physiological post- translation control of the β-catenin pathway via initiation of β-catenin degradation. Instead, evidence is provided that PB diminishes β-catenin protein production by inhibition of protein synthesis via signal transduction through EGFR and Src. The proposed mechanism is well in agreement with previously published activities of PB at the EGFR and Src-mediated regulation of β-catenin mRNA translation. Inhibition of β- catenin signaling by PB through the proposed mechanism might explain the inhibitory effect of PB on the growth of specific sub-populations of mouse liver tumors. In conclusion, the present data comprehensively characterize the effect of PB on β- catenin signaling in mouse hepatoma cells in vitro and provides mechanistic insight into the molecular processes underlying the observed effect

    Pseudomonas aeruginosa lectin LecB impairs keratinocyte fitness by abrogating growth factor signalling

    Get PDF
    Lectins are glycan-binding proteins with no catalytic activity and ubiquitously expressed in nature. Numerous bacteria use lectins to efficiently bind to epithelia, thus facilitating tissue colonisation. Wounded skin is one of the preferred niches for Pseudomonas aeruginosa, which has developed diverse strategies to impair tissue repair processes and promote infection. Here, we analyse the effect of the P. aeruginosa fucose-binding lectin LecB on human keratinocytes and demonstrate that it triggers events in the host, upon binding to fucosylated residues on cell membrane receptors, which extend beyond its role as an adhesion molecule. We found that LecB associates with insulin-like growth factor-1 receptor and dampens its signalling, leading to the arrest of cell cycle. In addition, we describe a novel LecB-triggered mechanism to down-regulate host cell receptors by showing that LecB leads to insulin-like growth factor-1 receptor internalisation and subsequent missorting towards intracellular endosomal compartments, without receptor activation. Overall, these data highlight that LecB is a multitask virulence factor that, through subversion of several host pathways, has a profound impact on keratinocyte proliferation and survival

    Impaired lymphoid extracellular matrix impedes antibacterial immunity in epidermolysis bullosa

    Get PDF
    Genetic loss of collagen VII causes recessive dystrophic epidermolysis bullosa (RDEB), a skin fragility disorder that, unexpectedly, manifests also with elevated colonization of commensal bacteria and frequent wound infections. Here, we describe an unprecedented systemic function of collagen VII as a member of a unique innate immune-supporting multiprotein complex in spleen and lymph nodes. In this complex, collagen VII specifically binds and sequesters the innate immune activator cochlin in the lumen of lymphoid conduits. In genetic mouse models, loss of collagen VII increased bacterial colonization by diminishing levels of circulating cochlin LCCL domain. Intraperitoneal injection of collagen VII, which restored cochlin in the spleen, but not in the skin, reactivated peripheral innate immune cells via cochlin and reduced bacterial skin colonization. Systemic administration of the cochlin LCCL domain was alone sufficient to diminish bacterial supercolonization of RDEB mouse skin. Human validation demonstrated that RDEB patients displayed lower levels of systemic cochlin LCCL domain with subsequently impaired macrophage response in infected wounds. This study identifies an intrinsic innate immune dysfunction in RDEB and uncovers a unique role of the lymphoid extracellular matrix in systemic defense against bacteria

    Rapid Combinatorial ERLIC–SCX Solid-Phase Extraction for In-Depth Phosphoproteome Analysis

    No full text
    Protein phosphorylation is an important mechanism of cellular signaling, and many proteins are precisely regulated through the interplay of stimulatory and inhibitory phosphorylation sites. Phosphoproteomics offers great opportunities to unravel this complex interplay, generating a mechanistic understanding of vital cellular processes. However, protein phosphorylation is substoichiometric and, in particular, peptides carrying multiple phosphorylation sites are extremely difficult to detect in a highly complex mixture of abundant nonphosphorylated peptides. Chromatographic methods are employed to reduce sample complexity and thereby significantly increase the number of phosphopeptide identifications. We previously demonstrated that combinatorial strong cation exchange–electrostatic repulsion–hydrophilic interaction chromatography yields a surplus in overall identifications of phosphopeptides compared with single chromatographic approaches. Here we present a simple and rapid strategy implemented as solid-phase extraction not requiring specific instrumentation such as off-line HPLC systems. It is inexpensive, adaptable for high and low amounts of starting material, and saves time by allowing multiplexed sample preparation without any carry-over problem

    Rapid Combinatorial ERLIC–SCX Solid-Phase Extraction for In-Depth Phosphoproteome Analysis

    No full text
    Protein phosphorylation is an important mechanism of cellular signaling, and many proteins are precisely regulated through the interplay of stimulatory and inhibitory phosphorylation sites. Phosphoproteomics offers great opportunities to unravel this complex interplay, generating a mechanistic understanding of vital cellular processes. However, protein phosphorylation is substoichiometric and, in particular, peptides carrying multiple phosphorylation sites are extremely difficult to detect in a highly complex mixture of abundant nonphosphorylated peptides. Chromatographic methods are employed to reduce sample complexity and thereby significantly increase the number of phosphopeptide identifications. We previously demonstrated that combinatorial strong cation exchange–electrostatic repulsion–hydrophilic interaction chromatography yields a surplus in overall identifications of phosphopeptides compared with single chromatographic approaches. Here we present a simple and rapid strategy implemented as solid-phase extraction not requiring specific instrumentation such as off-line HPLC systems. It is inexpensive, adaptable for high and low amounts of starting material, and saves time by allowing multiplexed sample preparation without any carry-over problem

    Fragments

    No full text
    In large-scale phosphoproteomics studies, fractionation by strong cation exchange (SCX) or electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) is commonly used to reduce sample complexity, fractionate phosphopeptides from their unmodified counterparts, and increase the dynamic range for phosphopeptide identification. However, these procedures do not succeed to separate, both singly and multiply phosphorylated peptides due to their inverse physicochemical characteristics. Hence, depending on the chosen method only one of the two peptide classes can be efficiently separated. Here, we present a novel strategy based on the combinatorial separation of singly and multiply phosphorylated peptides by SCX and ERLIC for in-depth phosphoproteome analysis. In SCX, mostly singly phosphorylated peptides are retained and fractionated while not-retained multiply phosphorylated peptides are fractionated in a subsequent ERLIC approach (SCX–ERLIC). In ERLIC, multiply phosphorylated peptides are fractionated, while not-retained singly phosphorylated peptides are separated by SCX (ERLIC–SCX). Compared to single step fractionations by SCX, the combinatorial strategies, SCX–ERLIC and ERLIC–SCX, yield up to 48% more phosphopeptide identifications as well as a strong increase in the number of detected multiphosphorylated peptides. Phosphopeptides identified in two subsequent, complementary fractionations had little overlap (5%) indicating that ERLIC and SCX are orthogonal methods ideally suited for in-depth phosphoproteome studies
    corecore