1,948 research outputs found

    Night Heart Rate Variability and Particulate Exposures among Boilermaker Construction Workers

    Get PDF
    Background: Although studies have documented the association between heart rate variability (HRV) and ambient particulate exposures, the association between HRV, especially at night, and metal-rich, occupational particulate exposures remains unclear. Objective: Our goal in this study was to investigate the association between long-duration HRV, including nighttime HRV, and occupational PM2.5 exposures. Methods: We used 24-hr ambulatory electrocardiograms (ECGs) to monitor 36 male boilermaker welders (mean age of 41 years) over a workday and nonworkday. ECGs were analyzed for HRV in the time domain; rMSSD (square root of the mean squared differences of successive intervals), SDNN (SD of normal-to-normal intervals over entire recording), and SDNNi (SDNN for all 5-min segments) were summarized over 24-hr, day (0730–2130 hours), and night (0000–0700 hours) periods. PM2.5 (particulate matter with an aerodynamic diameter ≤ 2.5 μm) exposures were monitored over the workday, and 8-hr time-weighted average concentrations were calculated. We used linear regression to assess the associations between HRV and workday particulate exposures. Matched measurements from a nonworkday were used to control for individual cardiac risk factors. Results: Mean (± SD) PM2.5 exposure was 0.73 ± 0.50 mg/m3 and ranged from 0.04 to 2.70 mg/m3. We observed a consistent inverse exposure–response relationship, with a decrease in all HRV measures with increased PM2.5 exposure. However, the decrease was most pronounced at night, where a 1-mg/m3 increase in PM2.5 was associated with a change of −8.32 [95% confidence interval (CI), −16.29 to −0.35] msec nighttime rMSSD, −14.77 (95% CI, −31.52 to 1.97) msec nighttime SDNN, and −8.37 (95% CI, −17.93 to 1.20) msec nighttime SDNNi, after adjusting for nonworking nighttime HRV, age, and smoking. Conclusion: Metal-rich particulate exposures were associated with decreased long-duration HRV, especially at night. Further research is needed to elucidate which particulate metal constituent is responsible for decreased HRV

    Unified Methods in Collecting, Preserving, and Archiving Coral Bleaching and Restoration Specimens to Increase Sample Utility and Interdisciplinary Collaboration

    Get PDF
    Coral reefs are declining worldwide primarily because of bleaching and subsequent mortality resulting from thermal stress. Currently, extensive efforts to engage in more holistic research and restoration endeavors have considerably expanded the techniques applied to examine coral samples. Despite such advances, coral bleaching and restoration studies are often conducted within a specific disciplinary focus, where specimens are collected, preserved, and archived in ways that are not always conducive to further downstream analyses by specialists in other disciplines. This approach may prevent the full utilization of unexpended specimens, leading to siloed research, duplicative efforts, unnecessary loss of additional corals to research endeavors, and overall increased costs. A recent US National Science Foundation-sponsored workshop set out to consolidate our collective knowledge across the disciplines of Omics, Physiology, and Microscopy and Imaging regarding the methods used for coral sample collection, preservation, and archiving. Here, we highlight knowledge gaps and propose some simple steps for collecting, preserving, and archiving coral-bleaching specimens that can increase the impact of individual coral bleaching and restoration studies, as well as foster additional analyses and future discoveries through collaboration. Rapid freezing of samples in liquid nitrogen or placing at −80 °C to −20 °C is optimal for most Omics and Physiology studies with a few exceptions; however, freezing samples removes the potential for many Microscopy and Imaging-based analyses due to the alteration of tissue integrity during freezing. For Microscopy and Imaging, samples are best stored in aldehydes. The use of sterile gloves and receptacles during collection supports the downstream analysis of host-associated bacterial and viral communities which are particularly germane to disease and restoration efforts. Across all disciplines, the use of aseptic techniques during collection, preservation, and archiving maximizes the research potential of coral specimens and allows for the greatest number of possible downstream analyses

    Transcriptomes of <i>Trypanosoma brucei</i> rhodesiense from sleeping sickness patients, rodents and culture:Effects of strain, growth conditions and RNA preparation methods

    Get PDF
    All of our current knowledge of African trypanosome metabolism is based on results from trypanosomes grown in culture or in rodents. Drugs against sleeping sickness must however treat trypanosomes in humans. We here compare the transcriptomes of Trypanosoma brucei rhodesiense from the blood and cerebrospinal fluid of human patients with those of trypanosomes from culture and rodents. The data were aligned and analysed using new user-friendly applications designed for Kinetoplastid RNA-Seq data. The transcriptomes of trypanosomes from human blood and cerebrospinal fluid did not predict major metabolic differences that might affect drug susceptibility. Usefully, there were relatively few differences between the transcriptomes of trypanosomes from patients and those of similar trypanosomes grown in rats. Transcriptomes of monomorphic laboratory-adapted parasites grown in in vitro culture closely resembled those of the human parasites, but some differences were seen. In poly(A)-selected mRNA transcriptomes, mRNAs encoding some protein kinases and RNA-binding proteins were under-represented relative to mRNA that had not been poly(A) selected; further investigation revealed that the selection tends to result in loss of longer mRNAs

    Wolbachia Mediate Variation of Host Immunocompetence

    Get PDF
    BACKGROUND: After decades during which endosymbionts were considered as silent in their hosts, in particular concerning the immune system, recent studies have revealed the contrary. In the present paper, we addressed the effect of Wolbachia, the most prevalent endosymbiont in arthropods, on host immunocompetence. To this end, we chose the A. vulgare-Wolbachia symbiosis as a model system because it leads to compare consequences of two Wolbachia strains (wVulC and wVulM) on hosts from the same population. Moreover, A. vulgare is the only host-species in which Wolbachia have been directly observed within haemocytes which are responsible for both humoral and cellular immune responses. METHODOLOGY/PRINCIPAL FINDINGS: We sampled gravid females from the same population that were either asymbiotic, infected with wVulC, or infected with wVulM. The offspring from these females were tested and it was revealed that individuals harbouring wVulC exhibited: (i) lower haemocyte densities, (ii) more intense septicaemia in their haemolymph and (iii) a reduced lifespan as compared to individuals habouring wVulM or asymbiotic ones. Therefore, individuals in this population of A. vulgare appeared to suffer more from wVulC than from wVulM. Symbiotic titer and location in the haemocytes did not differ for the two Wolbachia strains showing that these two parameters were not responsible for differences observed in their extended phenotypes in A. vulgare. CONCLUSION/SIGNIFICANCE: The two Wolbachia strains infecting A. vulgare in the same population induced variation in immunocompetence and survival of their hosts. Such variation should highly influence the dynamics of this host-symbiont system. We propose in accordance with previous population genetic works, that wVulM is a local strain that has attenuated its virulence through a long term adaptation process towards local A. vulgare genotypes whereas wVulC, which is a widespread and invasive strain, is not locally adapted

    TMEM106B is a genetic modifier of frontotemporal lobar degeneration with C9orf72 hexanucleotide repeat expansions

    Get PDF
    Hexanucleotide repeat expansions in chromosome 9 open reading frame 72 (C9orf72) have recently been linked to frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis, and may be the most common genetic cause of both neurodegenerative diseases. Genetic variants at TMEM106B influence risk for the most common neuropathological subtype of FTLD, characterized by inclusions of TAR DNA-binding protein of 43 kDa (FTLD-TDP). Previous reports have shown that TMEM106B is a genetic modifier of FTLD-TDP caused by progranulin (GRN) mutations, with the major (risk) allele of rs1990622 associating with earlier age at onset of disease. Here, we report that rs1990622 genotype affects age at death in a single-site discovery cohort of FTLD patients with C9orf72 expansions (n = 14), with the major allele correlated with later age at death (p = 0.024). We replicate this modifier effect in a 30-site international neuropathological cohort of FTLD-TDP patients with C9orf72 expansions (n = 75), again finding that the major allele associates with later age at death (p = 0.016), as well as later age at onset (p = 0.019). In contrast, TMEM106B genotype does not affect age at onset or death in 241 FTLD-TDP cases negative for GRN mutations or C9orf72 expansions. Thus, TMEM106B is a genetic modifier of FTLD with C9orf72 expansions. Intriguingly, the genotype that confers increased risk for developing FTLD-TDP (major, or T, allele of rs1990622) is associated with later age at onset and death in C9orf72 expansion carriers, providing an example of sign epistasis in human neurodegenerative disease

    Frontotemporal dementia and its subtypes: a genome-wide association study

    Get PDF
    SummaryBackground Frontotemporal dementia (FTD) is a complex disorder characterised by a broad range of clinical manifestations, differential pathological signatures, and genetic variability. Mutations in three genes—MAPT, GRN, and C9orf72—have been associated with FTD. We sought to identify novel genetic risk loci associated with the disorder. Methods We did a two-stage genome-wide association study on clinical FTD, analysing samples from 3526 patients with {FTD} and 9402 healthy controls. To reduce genetic heterogeneity, all participants were of European ancestry. In the discovery phase (samples from 2154 patients with {FTD} and 4308 controls), we did separate association analyses for each {FTD} subtype (behavioural variant FTD, semantic dementia, progressive non-fluent aphasia, and {FTD} overlapping with motor neuron disease FTD-MND), followed by a meta-analysis of the entire dataset. We carried forward replication of the novel suggestive loci in an independent sample series (samples from 1372 patients and 5094 controls) and then did joint phase and brain expression and methylation quantitative trait loci analyses for the associated (p&lt;5 × 10−8) single-nucleotide polymorphisms. Findings We identified novel associations exceeding the genome-wide significance threshold (p&lt;5 × 10−8). Combined (joint) analyses of discovery and replication phases showed genome-wide significant association at 6p21.3, \{HLA\} locus (immune system), for rs9268877 (p=1·05 × 10−8; odds ratio=1·204 95% \{CI\} 1·11–1·30), rs9268856 (p=5·51 × 10−9; 0·809 0·76–0·86) and rs1980493 (p value=1·57 × 10−8, 0·775 0·69–0·86) in the entire cohort. We also identified a potential novel locus at 11q14, encompassing RAB38/CTSC (the transcripts of which are related to lysosomal biology), for the behavioural \{FTD\} subtype for which joint analyses showed suggestive association for rs302668 (p=2·44 × 10−7; 0·814 0·71–0·92). Analysis of expression and methylation quantitative trait loci data suggested that these loci might affect expression and methylation in cis. Interpretation Our findings suggest that immune system processes (link to 6p21.3) and possibly lysosomal and autophagy pathways (link to 11q14) are potentially involved in FTD. Our findings need to be replicated to better define the association of the newly identified loci with disease and to shed light on the pathomechanisms contributing to FTD. Funding The National Institute of Neurological Disorders and Stroke and National Institute on Aging, the Wellcome/MRC Centre on Parkinson's disease, Alzheimer's Research UK, and Texas Tech University Health Sciences Center

    Localization of type 1 diabetes susceptibility to the MHC class I genes HLA-B and HLA-A

    Get PDF
    The major histocompatibility complex (MHC) on chromosome 6 is associated with susceptibility to more common diseases than any other region of the human genome, including almost all disorders classified as autoimmune. In type 1 diabetes the major genetic susceptibility determinants have been mapped to the MHC class II genes HLA-DQB1 and HLA-DRB1 (refs 1-3), but these genes cannot completely explain the association between type 1 diabetes and the MHC region. Owing to the region's extreme gene density, the multiplicity of disease-associated alleles, strong associations between alleles, limited genotyping capability, and inadequate statistical approaches and sample sizes, which, and how many, loci within the MHC determine susceptibility remains unclear. Here, in several large type 1 diabetes data sets, we analyse a combined total of 1,729 polymorphisms, and apply statistical methods - recursive partitioning and regression - to pinpoint disease susceptibility to the MHC class I genes HLA-B and HLA-A (risk ratios >1.5; Pcombined = 2.01 × 10-19 and 2.35 × 10-13, respectively) in addition to the established associations of the MHC class II genes. Other loci with smaller and/or rarer effects might also be involved, but to find these, future searches must take into account both the HLA class II and class I genes and use even larger samples. Taken together with previous studies, we conclude that MHC-class-I-mediated events, principally involving HLA-B*39, contribute to the aetiology of type 1 diabetes. ©2007 Nature Publishing Group
    • …
    corecore