17 research outputs found

    Strong and Broadband Pure Optical Activity in 3D Printed THz Chiral Metamaterials

    Full text link
    Optical activity (polarization rotation of light) is one of the most desired features of chiral media, as it is important for many polarization related applications. However, in the THz region, chiral media with strong optical activity are not available in nature. Here, we study theoretically, and experimentally a chiral metamaterial structure composed of pairs of vertical U-shape resonators of "twisted" arms, and we reveal that it demonstrates large pure optical activity (i.e. optical activity associated with negligible transmitted wave ellipticity) in the low THz regime. The experimental data show polarization rotation up to 25 (deg) for an unmatched bandwidth of 1 THz (relative bandwidth 80 %), from a 130 um-thickness structure, while theoretical optimizations show that the rotation can reach 45 (deg). The enhanced chiral response of the structure is analyzed through an equivalent RLC circuit model, which provides also simple optimization rules for the enhancement of its chiral response. The proposed chiral structures allow easy fabrication via direct laser writing and electroless metal plating, making them suitable candidates for polarization control applications.Comment: 17 pages, 7 figure

    Massive migration from the steppe is a source for Indo-European languages in Europe

    Full text link
    We generated genome-wide data from 69 Europeans who lived between 8,000-3,000 years ago by enriching ancient DNA libraries for a target set of almost four hundred thousand polymorphisms. Enrichment of these positions decreases the sequencing required for genome-wide ancient DNA analysis by a median of around 250-fold, allowing us to study an order of magnitude more individuals than previous studies and to obtain new insights about the past. We show that the populations of western and far eastern Europe followed opposite trajectories between 8,000-5,000 years ago. At the beginning of the Neolithic period in Europe, ~8,000-7,000 years ago, closely related groups of early farmers appeared in Germany, Hungary, and Spain, different from indigenous hunter-gatherers, whereas Russia was inhabited by a distinctive population of hunter-gatherers with high affinity to a ~24,000 year old Siberian6 . By ~6,000-5,000 years ago, a resurgence of hunter-gatherer ancestry had occurred throughout much of Europe, but in Russia, the Yamnaya steppe herders of this time were descended not only from the preceding eastern European hunter-gatherers, but from a population of Near Eastern ancestry. Western and Eastern Europe came into contact ~4,500 years ago, as the Late Neolithic Corded Ware people from Germany traced ~3/4 of their ancestry to the Yamnaya, documenting a massive migration into the heartland of Europe from its eastern periphery. This steppe ancestry persisted in all sampled central Europeans until at least ~3,000 years ago, and is ubiquitous in present-day Europeans. These results provide support for the theory of a steppe origin of at least some of the Indo-European languages of Europe

    A Cyanobacteria-Based Biofilm System for Advanced Brewery Wastewater Treatment

    No full text
    Algal/cyanobacterial biofilm photobioreactors provide an alternative technology to conventional photosynthetic systems for wastewater treatment based on high biomass production and easy biomass harvesting at low cost. This study introduces a novel cyanobacteria-based biofilm photobioreactor and assesses its performance in post-treatment of brewery wastewater and biomass production. Two different supporting materials (glass/polyurethane) were tested to investigate the effect of surface hydrophobicity on biomass attachment and overall reactor performance. The reactor exhibited high removal efficiency (over 65%) of the wastewater’s pollutants (chemical oxygen demand, nitrate, nitrite, ammonium, orthophosphate, and total Kjeldahl nitrogen), while biomass per reactor surface reached 13.1 and 12.8 g·m−2 corresponding to 406 and 392 mg·L−1 for glass and polyurethane, respectively, after 15 days of cultivation. The hydrophilic glass surface favored initial biomass adhesion, although eventually both materials yielded complete biomass attachment, highlighting that cell-to-cell interactions are the dominant adhesion mechanism in mature biofilms. It was also found that the biofilm accumulated up to 61% of its dry weight in carbohydrates at the end of cultivation, thus making the produced biomass a suitable feedstock for bioethanol production

    Utilization of Biomass Derived from Cyanobacteria-Based Agro-Industrial Wastewater Treatment and Raisin Residue Extract for Bioethanol Production

    No full text
    Biofuels produced from photosynthetic microorganisms such as microalgae and cyanobacteria could potentially replace fossil fuels as they offer several advantages over fuels produced from lignocellulosic biomass. In this study, energy production potential in the form of bioethanol was examined using different biomasses derived from the growth of a cyanobacteria-based microbial consortium on a chemical medium and on agro-industrial wastewaters (i.e., dairy wastewater, winery wastewater and mixed winery–raisin effluent) supplemented with a raisin residue extract. The possibility of recovering fermentable sugars from a microbial biomass dominated by the filamentous cyanobacterium Leptolynbgya sp. was demonstrated. Of the different acid hydrolysis conditions tested, the best results were obtained with sulfuric acid 2.5 N for 120 min using dried biomass from dairy wastewater and mixed winery–raisin wastewaters. After optimizing sugar release from the microbial biomass by applying acid hydrolysis, alcoholic fermentation was performed using the yeast Saccharomyces cerevisiae. Raisin residue extract was added to the treated biomass broth in all experiments to enhance ethanol production. Results showed that up to 85.9% of the theoretical ethanol yield was achieved, indicating the potential use of cyanobacteria-based biomass in combination with a raisin residue extract as feedstock for bioethanol production

    Laboratory- and Pilot-Scale Cultivation of Tetraselmis striata to Produce Valuable Metabolic Compounds

    No full text
    Marine microalgae are considered an important feedstock of multiple valuable metabolic compounds of high biotechnological potential. In this work, the marine microalga Tetraselmis striata was cultivated in different scaled photobioreactors (PBRs). Initially, experiments were performed using two different growth substrates (a modified F/2 and the commercial fertilizer Nutri-Leaf (30% TN—10% P—10% K)) to identify the most efficient and low-cost growth medium. These experiments took place in 4 L glass aquariums at the laboratory scale and in a 9 L vertical tubular pilot column. Enhanced biomass productivities (up to 83.2 mg L−1 d−1) and improved biomass composition (up to 41.8% d.w. proteins, 18.7% d.w. carbohydrates, 25.7% d.w. lipids and 4.2% d.w. total chlorophylls) were found when the fertilizer was used. Pilot-scale experiments were then performed using Nutri-Leaf as a growth medium in different PBRs: (a) a paddle wheel, open, raceway pond of 40 L, and (b) a disposable polyethylene (plastic) bag of 280 L working volume. Biomass growth and composition were also monitored at the pilot scale, showing that high-quality biomass can be produced, with important lipids (up to 27.6% d.w.), protein (up to 45.3% d.w.), carbohydrate (up to 15.5% d.w.) and pigment contents (up to 4.2% d.w. total chlorophylls), and high percentages of eicosapentaenoic acid (EPA). The research revealed that the strain successfully escalated in larger volumes and the biochemical composition of its biomass presents high commercial interest and could potentially be used as a feed ingredient

    Laboratory- and Pilot-Scale Cultivation of <i>Tetraselmis striata</i> to Produce Valuable Metabolic Compounds

    No full text
    Marine microalgae are considered an important feedstock of multiple valuable metabolic compounds of high biotechnological potential. In this work, the marine microalga Tetraselmis striata was cultivated in different scaled photobioreactors (PBRs). Initially, experiments were performed using two different growth substrates (a modified F/2 and the commercial fertilizer Nutri-Leaf (30% TN—10% P—10% K)) to identify the most efficient and low-cost growth medium. These experiments took place in 4 L glass aquariums at the laboratory scale and in a 9 L vertical tubular pilot column. Enhanced biomass productivities (up to 83.2 mg L−1 d−1) and improved biomass composition (up to 41.8% d.w. proteins, 18.7% d.w. carbohydrates, 25.7% d.w. lipids and 4.2% d.w. total chlorophylls) were found when the fertilizer was used. Pilot-scale experiments were then performed using Nutri-Leaf as a growth medium in different PBRs: (a) a paddle wheel, open, raceway pond of 40 L, and (b) a disposable polyethylene (plastic) bag of 280 L working volume. Biomass growth and composition were also monitored at the pilot scale, showing that high-quality biomass can be produced, with important lipids (up to 27.6% d.w.), protein (up to 45.3% d.w.), carbohydrate (up to 15.5% d.w.) and pigment contents (up to 4.2% d.w. total chlorophylls), and high percentages of eicosapentaenoic acid (EPA). The research revealed that the strain successfully escalated in larger volumes and the biochemical composition of its biomass presents high commercial interest and could potentially be used as a feed ingredient

    Cultivation of Arthrospira platensis in Brewery Wastewater

    No full text
    Cultivation of photosynthetic microorganisms in wastewater is a potential cost-effective method of treating wastewater and simultaneously providing the essential nutrients for high-value biomass production. This study investigates the cultivation of the cyanobacterium Arthrospira platensis in non-diluted and non-pretreated brewery wastewater under non-sterile and alkaline growth conditions. The system’s performance in terms of biomass productivity, pollutant consumption, pigment production and biomass composition was evaluated under different media formulations (i.e., addition of sodium chloride and/or bicarbonate) and different irradiation conditions (i.e., continuous illumination and 16:8 light:dark photoperiod). It was observed that the combination of sodium bicarbonate with sodium chloride resulted in maximum pigment production recorded at the end of the experiments, and the use of the photoperiod led to increased pollutant removal (up to 90% of initial concentrations) and biomass concentration (950 mg/L). The composition of the microbial communities established during the experiments was also determined. It was observed that heterotrophic bacteria dominated by the phyla of Pseudomonadota, Bacillota, and Bacteroidota prevailed, while the cyanobacteria population showcased a dynamic behavior throughout the experiments, as it increased towards the end of cultivation (relative abundance of 10% and 30% under continuous illumination and photoperiod application, respectively). Overall, Arthrospira platensis-based cultivation proved to be an effective method of brewery wastewater treatment, although the large numbers of heterotrophic bacteria limit the usage of the produced biomass to applications such as biofuel and biofertilizer production

    Cultivation of Arthrospira platensis in Brewery Wastewater

    No full text
    Cultivation of photosynthetic microorganisms in wastewater is a potential cost-effective method of treating wastewater and simultaneously providing the essential nutrients for high-value biomass production. This study investigates the cultivation of the cyanobacterium Arthrospira platensis in non-diluted and non-pretreated brewery wastewater under non-sterile and alkaline growth conditions. The system&rsquo;s performance in terms of biomass productivity, pollutant consumption, pigment production and biomass composition was evaluated under different media formulations (i.e., addition of sodium chloride and/or bicarbonate) and different irradiation conditions (i.e., continuous illumination and 16:8 light:dark photoperiod). It was observed that the combination of sodium bicarbonate with sodium chloride resulted in maximum pigment production recorded at the end of the experiments, and the use of the photoperiod led to increased pollutant removal (up to 90% of initial concentrations) and biomass concentration (950 mg/L). The composition of the microbial communities established during the experiments was also determined. It was observed that heterotrophic bacteria dominated by the phyla of Pseudomonadota, Bacillota, and Bacteroidota prevailed, while the cyanobacteria population showcased a dynamic behavior throughout the experiments, as it increased towards the end of cultivation (relative abundance of 10% and 30% under continuous illumination and photoperiod application, respectively). Overall, Arthrospira platensis-based cultivation proved to be an effective method of brewery wastewater treatment, although the large numbers of heterotrophic bacteria limit the usage of the produced biomass to applications such as biofuel and biofertilizer production

    Optimization of Cultivation Conditions for <i>Tetraselmis striata</i> and Biomass Quality Evaluation for Fish Feed Production

    No full text
    The marine microalgae Tetraselmis striata was cultivated in drilling waters with different salinities. Growth substrate optimization was performed while the effects of different pH, temperature, photoperiod and CO2 flow rate on biomass productivity and its composition were studied. Results showed that the strain grew better in 2.8% drilling waters employing the fertilizer Nutri-Leaf together with ΝaHCO3. A pH value of 8 resulted in high biomass productivity (79.8 mg L−1 d−1) and biomass composition (proteins 51.2% d.w., carbohydrates 14.6% d.w., lipids 27.8% d.w. and total chlorophylls 5.1% d.w.). The optimum cultivation temperature was found to be 25 ± 1 °C which further enhanced biomass productivity (93.7 mg L−1 d−1) and composition (proteins 38.7% d.w., carbohydrates 20.4% d.w., lipids 30.2% d.w., total chlorophylls 5.1% d.w.). Photoperiod experiments showed that continuous illumination was essential for biomass production. A 10 mL min−1 flow rate of CO2 lead to biomass productivity of 87.5 mg L−1 d−1 and high intracellular content (proteins 44.6% d.w., carbohydrates 10.3% d.w., lipids 27.3% d.w., total chlorophylls 5.2% d.w.). Applying the optimum growth conditions, the produced biomass presented high protein content with adequate amino acids and high percentages of eicosapentaenoic acid (EPA), indicating its suitability for incorporation into conventional fish feeds. In addition, this study analyzed how functional parameters may influence the uptake of nutrients by Tetraselmis
    corecore