89 research outputs found

    Amylin and leptin interaction: role during pregnancy, lactation and neonatal development

    Full text link
    Amylin is co-secreted with insulin by pancreatic β-cells in response to a meal and produced by neurons in discrete hypothalamic brain areas. Leptin is proportionally secreted by the adipose tissue. Both hormones control food intake and energy homeostasis post-weaning in rodents. While amylin's main site of action is located in the area postrema (AP) and leptin's is located in the mediobasal hypothalamus, both hormones can also influence the other's signaling pathway; amylin has been shown enhance hypothalamic leptin signaling, and amylin signaling in the AP may rely on functional leptin receptors to modulate its effects. These two hormones also play major roles during other life periods. During pregnancy, leptin levels rise as a result of an increase in fat depot resulting in gestational leptin-resistance to prepare the maternal body for the metabolic needs during fetal development. The role of amylin is far less studied during pregnancy and lactation, though amylin levels seem to be elevated during pregnancy relative to insulin. Whether amylin and leptin interact during pregnancy and lactation remains to be assessed. Lastly, during brain development, amylin and leptin are major regulators of cell birth during embryogenesis and act as neurotrophic factors in the neonatal period. This review will highlight the role of amylin and leptin, and their possible interaction, during these dynamic time periods of pregnancy, lactation, and early development

    Mediators of Amylin Action in Metabolic Control

    Full text link
    Amylin (also called islet amyloid polypeptide (IAPP)) is a pancreatic beta-cell hormone that is co-secreted with insulin in response to nutrient stimuli. The last 35 years of intensive research have shown that amylin exerts important physiological effects on metabolic control. Most importantly, amylin is a physiological control of meal-ending satiation, and it limits the rate of gastric emptying and reduces the secretion of pancreatic glucagon, in particular in postprandial states. The physiological effects of amylin and its analogs are mediated by direct brain activation, with the caudal hindbrain playing the most prominent role. The clarification of the structure of amylin receptors, consisting of the calcitonin core receptor plus receptor-activity modifying proteins, aided in the development of amylin analogs with a broad pharmacological profile. The general interest in amylin physiology and pharmacology was boosted by the finding that amylin is a sensitizer to the catabolic actions of leptin. Today, amylin derived analogs are considered to be among the most promising approaches for the pharmacotherapy against obesity. At least in conjunction with insulin, amylin analogs are also considered important treatment options in diabetic patients, so that new drugs may soon be added to the only currently approved compound pramlintide (Symlin®). This review provides a brief summary of the physiology of amylin’s mode of actions and its role in the control of the metabolism, in particular energy intake and glucose metabolism

    Editorial: Bariatric surgery, nutritional aspects and beyond

    Full text link

    Influence of High Energy Diet and Polygenic Predisposition for Obesity on Postpartum Health in Rat Dams

    Full text link
    It is estimated that 30% of pregnant women worldwide are overweight or obese, leading to adverse health effects for both mother and child. Women with obesity during pregnancy are at higher risk for developing both metabolic and mental disorders, such as diabetes and depression. Numerous studies have used rodent models of maternal obesity to understand its consequences on the offspring, yet characterization of changes in the dams is rare, and most rodent models rely solely on a high fat diet to induce maternal obesity, without regarding genetic propensity for obesity. Here we present the influence of both peripartum high energy diet (HE) and obesity-proneness on maternal health using selectively bred diet-resistant (DR) and diet-induced obese (DIO) rat dams. Outbred Sprague-Dawley rats were challenged with HE diet prior to mating and bred according to their propensity to gain weight. The original outbred breeding dams (F0) were maintained on low-fat chow during pregnancy and lactation. By comparison, the F1 dams consuming HE diet during pregnancy and lactation displayed higher gestational body weight gain (P < 0.01), and HE diet caused increased meal size and reduced meal frequency (P < 0.001). Sensitivity to the hormone amylin was preserved during pregnancy, regardless of diet. After several rounds of selective breeding, DIO and DR dams from generation F3 were provided chow or HE during pregnancy and lactation and assessed for their postpartum physiology and behaviors. We observed strong diet and phenotype effects on gestational weight gain, with DIO-HE dams gaining 119% more weight than DR-chow (P < 0.001). A high-resolution analysis of maternal behaviors did not detect main effects of diet or phenotype, but a subset of DIO dams showed delayed nursing behavior (P < 0.05). In generation F6/F7 dams, effects on gestational weight gain persisted (P < 0.01), and we observed a main effect of phenotype during a sucrose preference test (P < 0.05), with DIO-chow dams showing lower sucrose preference than DR controls (P < 0.05). Both DIO and DR dams consuming HE diet had hepatic steatosis (P < 0.001) and exhibited reduced leptin sensitivity in the arcuate nucleus (P < 0.001). These data demonstrate that both diet and genetic obesity-proneness have consequences on maternal health

    Body weight lowering effect of glucose-dependent insulinotropic polypeptide and glucagon-like peptide receptor agonists is more efficient in RAMP1/3 KO than in WT mice

    Full text link
    The glucose-dependent insulinotropic polypeptide (GIPR) and glucagon-like peptide (GLP-1R) receptor agonists are insulin secretagogues that have long been shown to improve glycemic control and dual agonists have demonstrated successful weight loss in the clinic. GIPR and GLP-1R populations are located in the dorsal vagal complex where receptor activity-modifying proteins (RAMPs) are also present. According to recent literature, RAMPs not only regulate the signaling of the calcitonin receptor, but also that of other class B G-protein coupled receptors, including members of the glucagon receptor family such as GLP-1R and GIPR. The aim of this study was to investigate whether the absence of RAMP1 and RAMP3 interferes with the action of GIPR and GLP-1R agonists on body weight maintenance and glucose control. To this end, WT and RAMP 1/3 KO mice were fed a 45% high fat diet for 22 weeks and were injected daily with GLP-1R agonist (2 nmol/kg/d; NN0113-2220), GIPR agonist (30 nmol/kg/d; NN0441-0329) or both for 3 weeks. While the mono-agonists exerted little to no body weight lowering and anorectic effects in WT or RAMP1/3 KO mice, but at the given doses, when both compounds were administered together, they synergistically reduced body weight, with a greater effect observed in KO mice. Finally, GLP-1R and GIP/GLP-1R agonist treatment led to improved glucose tolerance, but the absence of RAMPs resulted in an improvement of the HOMA-IR score. These data suggest that RAMPs may play a crucial role in modulating the pharmacological actions of GLP-1 and GIP receptors

    Early Postoperative Exposure to High-Fat Diet Does Not Increase Long-Term Weight Loss or Fat Avoidance After Roux-en-Y Gastric Bypass in Rats

    Full text link
    BackgroundBariatric surgery alters food preferences in rats and reportedly decreases desire to consume high-fat high-sugar food in humans. The aim of this study was to investigate whether early post-operative exposure to high-fat food could increase body weight loss after Roux-en-Y gastric bypass (RYGB) by triggering fat avoidance.MethodsMale Wistar rats underwent either RYGB (n = 15) or sham-operations (n = 16). Preoperatively a standardized 4-choice cafeteria diet [dietary options: low-fat/low-sugar (LFLS), low-fat/high-sugar (LFHS), high-fat/low-sugar (HFLS), high-fat/high-sugar (HFHS)] was offered. First, each option was available for 4 days, thereafter rats were offered the 4 options simultaneously for 3 days preoperatively. Post-surgery, 8 rats in the RYGB- and 8 in the sham-group were exposed to a high-fat content diet (Oatmeal + 30% lard, OM+L) for 10 days, while 7 RYGB rats and 8 sham-rats received OM alone. From the 11th postoperative day, the 4-choice cafeteria diet was reintroduced for 55-days. The intake of all available food items, macronutrients and body weight changes were monitored over 8 weeks. Main outcomes were long-term body-weight and daily change in relative caloric intake during the postoperative cafeteria period compared to the preoperative cafeteria.ResultsDuring the first 12 days of postoperative cafeteria access, RYGB-rats exposed to OM+L had a higher mean caloric intake per day than RYGB rats exposed to OM alone (Δ10 kCal, Padj_{adj} = 0.004), but this difference between the RYGB groups disappeared thereafter. Consequently, in the last 33 days of the postoperative cafeteria diet, the mean body weight of the RYGB+OM+L group was higher compared to RYGB+OM (Δ51 g, Padj_{adj} < 0.001). RYGB rats, independently from the nutritional intervention, presented a progressive decrease in daily consumption of calories from fat and increased their daily energy intake mainly from non-sugar carbohydrates. No such differences were detected in sham-operated controls exposed to low- or high fat postoperative interventions.ConclusionA progressive decrease in daily fat intake over time was observed after RYGB, independently from the nutritional intervention. This finding confirms that macronutrient preferences undergo progressive changes over time after RYGB and supports the role of ingestive adaptation and learning. Early postoperative exposure to high-fat food failed to accentuate fat avoidance and did not lead to superior weight loss in the long-term

    Vaccination Against Amyloidogenic Aggregates in Pancreatic Islets Prevents Development of Type 2 Diabetes Mellitus

    Get PDF
    Type 2 diabetes mellitus (T2DM) is a chronic progressive disease characterized by insulin resistance and insufficient insulin secretion to maintain normoglycemia. The majority of T2DM patients bear amyloid deposits mainly composed of islet amyloid polypeptide (IAPP) in their pancreatic islets. These-originally β-cell secretory products-extracellular aggregates are cytotoxic for insulin-producing β-cells and are associated with β-cell loss and inflammation in T2DM advanced stages. Due to the absence of T2DM preventive medicaments and the presence of only symptomatic drugs acting towards increasing hormone secretion and action, we aimed at establishing a novel disease-modifying therapy targeting the cytotoxic IAPP deposits in order to prevent the development of T2DM. We generated a vaccine based on virus-like particles (VLPs), devoid of genomic material, coupled to IAPP peptides inducing specific antibodies against aggregated, but not monomeric IAPP. Using a mouse model of islet amyloidosis, we demonstrate in vivo that our vaccine induced a potent antibody response against aggregated, but not soluble IAPP, strikingly preventing IAPP depositions, delaying onset of hyperglycemia and the induction of the associated pro-inflammatory cytokine Interleukin 1β (IL-1β). We offer the first cost-effective and safe disease-modifying approach targeting islet dysfunction in T2DM, preventing pathogenic aggregates without disturbing physiological IAPP function.These studies were funded by a project grant from the Swiss National Foundation (SNF). We acknowledge the technical assistance of Sydney W. Pence and Faith Slubowski at the Institute of Veterinary Physiology, University of Zürich. We appreciate the kind possibility given by Nanolive (Lausanne, Switzerland) for the opportunity and the collaborative acquisition of tomographic pictures.S

    Roux-En-Y Gastric Bypass (RYGB) Surgery during High Liquid Sucrose Diet Leads to Gut Microbiota-Related Systematic Alterations

    Full text link
    Roux-en-Y gastric bypass (RYGB) surgery has been proven successful in weight loss and improvement of co-morbidities associated with obesity. Chronic complications such as malabsorption of micronutrients in up to 50% of patients underline the need for additional therapeutic approaches. We investigated systemic RYGB surgery effects in a liquid sucrose diet-induced rat obesity model. After consuming a diet supplemented with high liquid sucrose for eight weeks, rats underwent RYGB or control sham surgery. RYGB, sham pair-fed, and sham ad libitum-fed groups further continued on the diet after recovery. Notable alterations were revealed in microbiota composition, inflammatory markers, feces, liver, and plasma metabolites, as well as in brain neuronal activity post-surgery. Higher fecal 4-aminobutyrate (GABA) correlated with higher Bacteroidota and Enterococcus abundances in RYGB animals, pointing towards the altered enteric nervous system (ENS) and gut signaling. Favorable C-reactive protein (CRP), serine, glycine, and 3-hydroxybutyrate plasma profiles in RYGB rats were suggestive of reverted obesity risk. The impact of liquid sucrose diet and caloric restriction mainly manifested in fatty acid changes in the liver. Our multi-modal approach reveals complex systemic changes after RYGB surgery and points towards potential therapeutic targets in the gut-brain system to mimic the surgery mode of action
    • …
    corecore