39 research outputs found

    Agile Methoden in Entwicklungsprojekten zur Innovation digitaler Hochschullehre

    Get PDF
    Hochschulen stehen vor der Herausforderung, ihre Lehre im Rahmen der digitalen Transformation laufend zu innovieren. Dabei zielen sie vielfach auf eine Anreicherung der Lehre mit neuen digitalen Technologien ab. Um derartige Technologien nachhaltig und bedarfsorientiert zu entwickeln, bietet sich der Einsatz agiler Entwicklungsmethoden an, deren Umsetzung jedoch hĂ€ufig mit universitĂ€ren Strukturen und Prozessen kollidiert. Entsprechende Projekte sehen sich mit der Schwierigkeit konfrontiert, die Werte agiler Projektmethoden dennoch umzusetzen und zu leben. Dieser Beitrag berichtet von einem Good-Practice-Beispiel, in dem mithilfe von angepassten agilen Methoden interdisziplinĂ€r nutzbare Plugins zur digitalen UnterstĂŒtzung von Feedback- und Gruppenkooperationsszenarien fĂŒr das an der UniversitĂ€t Augsburg genutzte LMS entwickelt wurden

    Accuracy of the urine point-of-care circulating cathodic antigen assay for diagnosing Schistosomiasis mansoni infection in Brazil: a multicenter study

    Get PDF
    Secretaria de VigilĂąncia em SaĂșde / Fundo Nacional de SaĂșde / MinistĂ©rio da SaĂșde - [TED/FNS: 118/2017; SIAFI: 691919 / 25000.479741/2017-05Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. LaboratĂłrio de Educação em Ambiente e SaĂșde. Rio de Janeiro, RJ, Brasil.Universidade Federal do CearĂĄ. Departamento de AnĂĄlises ClĂ­nicas e ToxicolĂłgicas. Fortaleza, CE, Brasil.Fundação Oswaldo Cruz. Instituto RenĂ© Rachou. Belo Horizonte, MG, Brasil.MinistĂ©rio da SaĂșde. Secretaria de CiĂȘncia, Tecnologia, Inovação e Insumos EstratĂ©gicos. Instituto Evandro Chagas. LaboratĂłrio de Parasitoses Intestinais, Esquistossomose e Malacologia. Ananindeua, PA, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. LaboratĂłrio de Educação em Ambiente e SaĂșde. Rio de Janeiro, RJ, Brasil.Universidade Federal do EspĂ­rito Santo. Centro de CiĂȘncias da SaĂșde. Unidade de Doenças Infecciosas. VitĂłria, ES, Brasil / PontifĂ­cia Universidade CatĂłlica do Rio Grande do Sul. LaboratĂłrio de Parasitologia BiomĂ©dica. Porto Alegre, RS, Brasil.Fundação Oswaldo Cruz. Instituto Gonçalo Moniz. Salvador, BA, Brasil.Fundação Oswaldo Cruz. Instituto Gonçalo Moniz. Salvador, BA, Brasil / Universidade Federal da Bahia. Faculdade de Medicina. Salvador, BA, Brasil / Yale University. School of Public Health. Department of Epidemiology of Microbial Diseases. New Haven, CT, USA.Fundação Oswaldo Cruz. Instituto Gonçalo Moniz. Salvador, BA, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. LaboratĂłrio de Educação em Ambiente e SaĂșde. Rio de Janeiro, RJ, Brasil.PontifĂ­cia Universidade CatĂłlica do Rio Grande do Sul. LaboratĂłrio de Parasitologia BiomĂ©dica. Porto Alegre, RS, Brasil.Fundação Oswaldo Cruz. Instituto Gonçalo Moniz. Salvador, BA, Brasil.MinistĂ©rio da SaĂșde. Secretaria de CiĂȘncia, Tecnologia, Inovação e Insumos EstratĂ©gicos. Instituto Evandro Chagas. LaboratĂłrio de Parasitoses Intestinais, Esquistossomose e Malacologia. Ananindeua, PA, Brasil.Fundação Oswaldo Cruz. Instituto Gonçalo Moniz. Salvador, BA, Brasil.PontifĂ­cia Universidade CatĂłlica do Rio Grande do Sul. LaboratĂłrio de Parasitologia BiomĂ©dica. Porto Alegre, RS, Brasil.Universidade Federal do CearĂĄ. Departamento de AnĂĄlises ClĂ­nicas e ToxicolĂłgicas. Fortaleza, CE, Brasil.Fundação Oswaldo Cruz. Instituto Gonçalo Moniz. Salvador, BA, Brasil.Fundação Oswaldo Cruz. Instituto Gonçalo Moniz. Salvador, BA, Brasil.Fundação Oswaldo Cruz. Instituto Gonçalo Moniz. Salvador, BA, Brasil.PontifĂ­cia Universidade CatĂłlica do Rio Grande do Sul. LaboratĂłrio de Parasitologia BiomĂ©dica. Porto Alegre, RS, Brasil.Fundação Oswaldo Cruz. Instituto RenĂ© Rachou. Belo Horizonte, MG, Brasil.Background: The World Health Organization recommends a market-ready, urine-based point-of-care diagnostic test for circulating cathodic antigens (CCA) to determine the prevalence of S. mansoni. This study evaluated the performance of the URINE CCA (SCHISTO) ECO TESTEÂź (POC-ECO), which is currently available in Brazil. Methods: Residents from eight sites with different prevalence estimates provided one urine sample for POC-ECO and one stool sample for Kato-Katz (KK) and HelmintexÂź (HTX) testing as an egg-detecting reference for infection status. Results: None of the study sites had significantly higher POC-ECO accuracy than KK. Conclusions: POC-ECO is not currently recommended in Brazilian schistosomiasis elimination programs

    Glycerol Monolaurate and Dodecylglycerol Effects on Staphylococcus aureus and Toxic Shock Syndrome Toxin-1 In Vitro and In Vivo

    Get PDF
    BACKGROUND:Glycerol monolaurate (GML), a 12 carbon fatty acid monoester, inhibits Staphylococcus aureus growth and exotoxin production, but is degraded by S. aureus lipase. Therefore, dodecylglycerol (DDG), a 12 carbon fatty acid monoether, was compared in vitro and in vivo to GML for its effects on S. aureus growth, exotoxin production, and stability. METHODOLOGY/PRINCIPAL FINDINGS:Antimicrobial effects of GML and DDG (0 to 500 microg/ml) on 54 clinical isolates of S. aureus, including pulsed-field gel electrophoresis (PFGE) types USA200, USA300, and USA400, were determined in vitro. A rabbit Wiffle ball infection model assessed GML and DDG (1 mg/ml instilled into the Wiffle ball every other day) effects on S. aureus (MN8) growth (inoculum 3x10(8) CFU/ml), toxic shock syndrome toxin-1 (TSST-1) production, tumor necrosis factor-alpha (TNF-alpha) concentrations and mortality over 7 days. DDG (50 and 100 microg/ml) inhibited S. aureus growth in vitro more effectively than GML (p<0.01) and was stable to lipase degradation. Unlike GML, DDG inhibition of TSST-1 was dependent on S. aureus growth. GML-treated (4 of 5; 80%) and DDG-treated rabbits (2 of 5; 40%) survived after 7 days. Control rabbits (5 of 5; 100%) succumbed by day 4. GML suppressed TNF-alpha at the infection site on day 7; however, DDG did not (<10 ng/ml versus 80 ng/ml, respectively). CONCLUSIONS/SIGNIFICANCE:These data suggest that DDG was stable to S. aureus lipase and inhibited S. aureus growth at lower concentrations than GML in vitro. However, in vivo GML was more effective than DDG by reducing mortality, and suppressing TNF-alpha, S. aureus growth and exotoxin production, which may reduce toxic shock syndrome. GML is proposed as a more effective anti-staphylococcal topical anti-infective candidate than DDG, despite its potential degradation by S. aureus lipase

    The Gene Ontology knowledgebase in 2023

    Get PDF
    The Gene Ontology (GO) knowledgebase (http://geneontology.org) is a comprehensive resource concerning the functions of genes and gene products (proteins and noncoding RNAs). GO annotations cover genes from organisms across the tree of life as well as viruses, though most gene function knowledge currently derives from experiments carried out in a relatively small number of model organisms. Here, we provide an updated overview of the GO knowledgebase, as well as the efforts of the broad, international consortium of scientists that develops, maintains, and updates the GO knowledgebase. The GO knowledgebase consists of three components: (1) the GO-a computational knowledge structure describing the functional characteristics of genes; (2) GO annotations-evidence-supported statements asserting that a specific gene product has a particular functional characteristic; and (3) GO Causal Activity Models (GO-CAMs)-mechanistic models of molecular "pathways" (GO biological processes) created by linking multiple GO annotations using defined relations. Each of these components is continually expanded, revised, and updated in response to newly published discoveries and receives extensive QA checks, reviews, and user feedback. For each of these components, we provide a description of the current contents, recent developments to keep the knowledgebase up to date with new discoveries, and guidance on how users can best make use of the data that we provide. We conclude with future directions for the project

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∌99% of the euchromatic genome and is accurate to an error rate of ∌1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Etablierung eines Darmgewebemodells fĂŒr PrĂ€klinische Screenings

    No full text
    The small intestine represents a strong barrier separating the lumen from blood circulation thereby playing a major role in the absorption and the transport of pharmacological agents prior to their arrival on the respective target site. In order to gain more knowledge about specialized uptake mechanisms and risk assessment for the patient after oral admission of drugs, intestinal in vitro models demonstrating a close similarity to the in vivo situation are needed. In the past, cell line-based in vitro models composed of Caco-2 cells cultured on synthetic cell carriers represented the “gold standard” in the field of intestinal tissue engineering. Expressive advantages of these models are a reproducible, cost-efficient and standardized model set up, but cell function can be negatively influenced by the low porosity or unwanted molecular adhesion effects of the artificial scaffold material. Natural extracellular matrices (ECM) such as the porcine decellularized small intestinal submucosa (SIS) are used as alternative to overcome some common drawbacks; however, the fabrication of these scaffolds is time- and cost-intensive, less well standardized and the 3Rs (replacement, reduction, refinement) principle is not entirely fulfilled. Nowadays, biopolymer-based scaffolds such as the bacterial nanocellulose (BNC) suggest an interesting option of novel intestinal tissue engineered models, as the BNC shows comparable features to the native ECM regarding fiber arrangement and hydrophilic properties. Furthermore, the BNC is of non-animal origin and the manufacturing process is faster as well as well standardized at low costs. In this context, the first part of this thesis analyzed the BNC as alternative scaffold to derive standardized and functional organ models in vitro. Therefore, Caco-2 cells were cultured on two versions of BNC with respect to their surface topography, the unmodified BNC as rather smooth surface and the surface-structured BNC presenting an aligned fiber arrangement. As controls, Caco-2 in vitro models were set up on PET and SIS matrices. In this study, the BNC-based models demonstrated organ-specific properties comprising typical cellular morphologies, a characteristic tight junction protein expression profile, representative ultrastructural features and the formation of a tight epithelial barrier together with a corresponding transport activity. In summary, these results validated the high quality of the BNC-based Caco-2 models under cost-efficient conditions and their suitability for pre-clinical research purposes. However, the full functional diversity of the human intestine cannot be presented by Caco-2 cells due to their tumorigenic background and their exclusive representation of mature enterocytes. Next to the scaffold used for the setup of in vitro models, the cellular unit mainly drives functional performance, which demonstrates the crucial importance of mimicking the cellular diversity of the small intestine in vitro. In this context, intestinal primary organoids are of high interest, as they show a close similarity to the native epithelium regarding their cellular diversity comprising enterocytes, goblet cells, enteroendocrine cells, paneth cells, transit amplifying cells and stem cells. In general, such primary organoids grow in a 3D MatrigelÂź based environment and a medium formulation supplemented with a variety of growth factors to maintain stemness, to inhibit differentiation and to stimulate cell migration supporting long term in vitro culture. Intestinal primary spheroid/organoid cultures were set up as TranswellÂź-like models on both BNC variants, which resulted in a fragmentary cell layer and thereby unfavorable properties of these scaffold materials under the applied circumstances. As the BNC manufacturing process is highly flexible, surface properties could be adapted in future studies to enable a good cell adherence and barrier formation for primary intestinal cells, too. However, the application of these organoid cultures in pre-clinical research represents an enormous challenge, as the in vitro culture is complex and additionally time- and cost-intensive. With regard to the high potential of primary intestinal spheroids/organoids and the necessity of a simplified but predictive model in pre-clinical research purposes, the second part of this thesis addressed the establishment of a primary-derived immortalized intestinal cell line, which enables a standardized and cost-efficient culture (including in 2D), while maintaining the cellular diversity of the organoid in vitro cultures. In this study, immortalization of murine and human intestinal primary organoids was induced by ectopic expression of a 10- (murine) or 12 component (human) pool of genes regulating stemness and the cell cycle, which was performed in cooperation with the InSCREENeX GmbH in a 2D- and 3D-based transduction strategy. In first line, the established cell lines (cell clones) were investigated for their cell culture prerequisites to grow under simplified and cost-efficient conditions. While murine cell clones grew on uncoated plastic in a medium formulation supplemented with EGF, Noggin, Y-27632 and 10% FCS, the human cell clones demonstrated the necessity of a Col I pre coating together with the need for a medium composition commonly used for primary human spheroid/organoid cultures. Furthermore, the preceding analyses resulted in only one human cell clone and three murine cell clones for ongoing characterization. Studies regarding the proliferative properties and the specific gene as well as protein expression profile of the remaining cell clones have shown, that it is likely that transient amplifying cells (TACs) were immortalized instead of the differentiated cell types localized in primary organoids, as 2D, 3D or TranswellÂź-based cultures resulted in slightly different gene expression profiles and in a dramatically reduced mRNA transcript level for the analyzed marker genes representative for the differentiated cell types of the native epithelium. Further, 3D cultures demonstrated the formation of spheroid-like structures; however without forming organoid-like structures due to prolonged culture, indicating that these cell populations have lost their ability to differentiate into specific intestinal cell types. The TranswellÂź-based models set up of each clone exhibit organ-specific properties comprising an epithelial-like morphology, a characteristic protein expression profile with an apical mucus-layer covering the villin-1 positive cell layer, thereby representing goblet cells and enterocytes, together with representative tight junction complexes indicating an integer epithelial barrier. The proof of a functional as well as tight epithelial barrier in TEER measurements and in vivo-like transport activities qualified the established cell clones as alternative cell sources for tissue engineered models representing the small intestine to some extent. Additionally, the easy handling and cell expansion under more cost-efficient conditions compared to primary organoid cultures favors the use of these newly generated cell clones in bioavailability studies. Altogether, this work demonstrated new components, structural and cellular, for the establishment of alternative in vitro models of the small intestinal epithelium, which could be used in pre-clinical screenings for reproducible drug delivery studies.Der DĂŒnndarm bildet eine starke Barriere aus, welche das Lumen vom Blutkreislauf trennt, und dadurch maßgeblich an der Absorption und dem Transport von pharmakologischen Wirkstoffen beteiligt ist, bevor diese ihren Wirkort erreichen. Um ein detaillierteres Wissen ĂŒber die speziellen Aufnahmemechanismen zu erlangen und zur RisikoabschĂ€tzung fĂŒr den Patienten nach oraler Aufnahme dieser Medikamente, sind intestinale in vitro Modelle erforderlich, die eine große Ähnlichkeit mit der Situation in vivo aufweisen. In der Vergangenheit stellten Caco-2 Zelllinien-basierte in vitro Modelle, die auf synthetischen TrĂ€gerstrukturen aufgebaut sind, den „Goldstandard“ auf dem Gebiet der intestinalen Geweberekonstruktion dar. Bedeutende Vorteile dieser Modelle sind der reproduzierbare, kosteneffiziente und standardisierte Modellaufbau, jedoch können die zellulĂ€ren Funktionen durch die geringe PorositĂ€t oder die unerwĂŒnschten molekularen AdhĂ€sionseffekte des kĂŒnstlichen TrĂ€germaterials negativ beeinflusst werden. Um einige hĂ€ufige Nachteile zu ĂŒberwinden werden natĂŒrliche extrazellulĂ€re Matrizen (ECM) wie die porzine dezellularisierte DĂŒnndarm-submukosa (SIS) verwendet, jedoch ist die Herstellung dieser TrĂ€gerstrukturen zeit- und kostenintensiv, weniger gut standardisiert und entspricht nicht ganzheitlich dem 3R-Prinzip (Replace = Vermeiden, Reduce = Verringern, Refine = Verbessern). Heutzutage ermöglichen biopolymer-basierte TrĂ€gerstrukturen wie die bakterielle Nanozellulose (BNC) die Entwicklung von neuartigen intestinalen Gewebemodellen, da die BNC eine große Ähnlichkeit hinsichtlich der Faseranordnung und der hydrophilen Eigenschaften mit der nativen ECM aufweist. DarĂŒber hinaus ist die BNC nicht tierischen Ursprungs und der Herstellungsprozess schneller, gut standardisiert als auch kostengĂŒnstig. In diesem Zusammenhang wurde im ersten Teil dieser Arbeit nachgewiesen, dass die BNC als alternative TrĂ€gerstruktur fĂŒr standardisierte und funktionelle Organmodelle in vitro geeignet ist. DafĂŒr wurden Caco-2 Zellen auf zwei Varianten der BNC kultiviert, die sich in ihrer OberflĂ€chentopographie unterscheiden, wobei die nicht-modifizierte BNC eine glatte OberflĂ€che und die oberflĂ€chen-strukturierte BNC eine ausgerichtete Faseranordnung aufweist. Als Kontrollen dienten Caco 2 zellbasierte in vitro Modelle, die auf PET- oder SIS Matrizes aufgebaut wurden. In dieser Studie wiesen die BNC-basierten Modelle die wichtigsten organ-spezifischen Eigenschaften auf, darunter eine typische zellulĂ€re Morphologie, ein charakteristisches Expressionsprofil der Tight Junction Proteine, reprĂ€sentative ultrastrukturelle Merkmale und die Bildung einer dichten epithelialen Barriere verbunden mit einer entsprechenden TransportaktivitĂ€t. Zusammenfassend bestĂ€tigten diese Ergebnisse die hohe QualitĂ€t der BNC-basierten Caco-2 Modelle unter kosteneffizienten Herstellbedingungen und ihre Eignung fĂŒr prĂ€klinische Forschungszwecke. Allerdings kann die volle Funktionsvielfalt des menschlichen Darms durch Caco-2 Zellen aufgrund ihres kanzerogenen Ursprungs und der exklusiven ReprĂ€sentanz von Enterozyten nicht abgebildet werden. Neben der TrĂ€gerstruktur die fĂŒr den Aufbau der in vitro Modelle verwendet wird, trĂ€gt auch die zellulĂ€re Einheit zur Etablierung von funktionalen Modellen bei, weshalb es von großer Bedeutung ist, die zellulĂ€re Vielfalt des DĂŒnndarms in diesen Modellen in vitro nachzuahmen. In diesem Zusammenhang sind die primĂ€ren intestinalen Organoide, die sich hauptsĂ€chlich aus Enterozyten, Becherzellen, enteroendokrinen Zellen, Paneth Zellen, VorlĂ€uferzellen und Stammzellen zusammensetzen, von großem Interesse, da die zellulĂ€re Komponente eine große Ähnlichkeit zum nativen Epithel aufweist. Derartige primĂ€re Organoide werden ĂŒblicherweise in einer 3D-MatrigelÂź Umgebung und einer speziellen Formulierung des Mediums, die mit einer Vielzahl an Wachstumsfaktoren ergĂ€nzt wird, um das Stammzellpotenzial zu erhalten, die Differenzierung zu hemmen, die Zellmigration zu stimulieren und somit eine langfristige in vitro-Kultivierung zu unterstĂŒtzt. Intestinale primĂ€re SphĂ€roid-/Organoidkulturen wurden auf beiden BNC Varianten als TranswellÂź-Ă€hnliche Modelle aufgebaut. Dabei zeigte sich eine fragmentierte Zellschicht was darauf schließen lĂ€sst, dass die Matrix unter diesen Bedingungen fĂŒr den Modellaufbau ungeeignet ist. Da der BNC-Herstellungsprozess sehr flexibel ist, könnten die OberflĂ€chen-eigenschaften in zukĂŒnftigen Studien angepasst werden, um so eine gute ZelladhĂ€sion auch fĂŒr primĂ€re Darmzellen zu ermöglichen. Die Anwendung dieser Organoid-basierten Kulturen stellt jedoch fĂŒr die prĂ€klinische Forschung eine enorme Herausforderung dar, da die Kultivierung komplex und zudem sehr zeit- und kosten-intensiv ist. Im Hinblick auf das hohe Potenzial der primĂ€ren intestinalen SphĂ€roide/Organoide und der Notwendigkeit eines vereinfachten aber prĂ€diktiven Modells fĂŒr prĂ€klinische Forschungs-zwecke, befasste sich der zweite Teil der Arbeit mit der Etablierung einer primĂ€ren immortalisierten intestinalen Zelllinie, die eine standardisierte und kosteneffiziente Kultur ermöglicht, wobei die zellulĂ€re Vielfalt der in vitro Organoid-Kulturen erhalten bleibt. In dieser Studie wurden primĂ€re Organoide aus dem murinen und dem menschlichen DĂŒnndarm durch die ektopische Expression eines 10- (murin) bzw. 12 Komponenten (human) Pools von Genen, welche im Hinblick auf die Regulation der Stammzellen und dem Zellzyklus bekannt sind, in Zusammenarbeit mit der InSCREENeX GmbH in einer 2D- und 3D-basierten Transduktionsstrategie immortalisiert. In erster Linie wurden die etablierten Zelllinien (Zellklone) auf ihren Bedarf an Wachstumsfaktoren fĂŒr die Kultivierung unter vereinfachten und kosteneffizienten Bedingungen hin untersucht. WĂ€hrend die murinen Zellklone auf unbeschichteten Kunststoff in einer Mediumformulierung mit hEGF, mNoggin, Y-27632 und 10% FCS wuchsen, zeigten die humanen Zellklone eine Notwendigkeit fĂŒr eine Col I-Vorbeschichtung zusammen mit einer Zusammensetzung des Mediums, wie sie ĂŒblicherweise fĂŒr primĂ€re humane SphĂ€roide/Organoide verwendet wird. DarĂŒber hinaus fĂŒhrten diese vorangegangenen Analysen dazu, dass nur ein humaner Zellklon und drei murine Zellklone umfĂ€nglich charakterisiert wurden. Studien zu proliferativen Eigenschaften und spezifischen Gen- sowie Proteinexpressionsprofilen dieser Klone haben gezeigt, dass vermutlich VorlĂ€uferzellen (TACs) anstelle der differenzierten Zelltypen der primĂ€ren Organoide immortalisiert wurden, da die Kultivierung in 2D, 3D oder in TranswellÂź-basierten Modellen zu einem geringfĂŒgig verĂ€nderten Genexpressionsprofil im Vergleich untereinander und zudem zu einem stark reduzierten mRNA-Transkriptionswert fĂŒr die analysierten Markergene, welche die differenzierten Zelltypen des nativen Epithels reprĂ€sentieren, die Folge war. Weiterhin zeigte die 3D-Kultivierung die Bildung von SphĂ€roid-Ă€hnlichen Strukturen, jedoch keine Organoid-Ă€hnlichen Strukturen unter verlĂ€ngerten Kultur-bedingungen, was darauf hinweist, dass diese Zellpopulationen ihre Eigenschaft zur Differenzierung hin zu spezifischen intestinalen Zelltypen eingebĂŒĂŸt haben. Die TranswellÂź-basierten Modelle, welche fĂŒr jeden Klon etabliert wurden, weisen zudem Organ-spezifische Eigenschaften auf, wie eine epitheliale Morphologie, ein charakteristisches Protein-expressionsprofil mit einer apikalen Schleimschicht, welche den Villin-1 positiven Zelllayer bedeckt und somit den Nachweis erbringt, dass die entstandenen immortalisierten Zellpopulationen zu einem gewissen Anteil aus Becherzellen und Enterozyten bestehen. Zudem konnten reprĂ€sentative Tight-Junction Komplexe, die auf eine dichte epitheliale Barriere hinweisen, in entsprechenden Proteinexpressionsprofilanalysen nachgewiesen werden. Der Nachweis einer sowohl dichten als auch funktionellen epithelialen Barriere konnte weitergehend durch TEER-Messungen und in vivo-Ă€hnliche Transportmechanismen fĂŒr die etablierten Zellklone qualifiziert werden, wodurch diese Zellen als alternative Zellquelle fĂŒr in vitro Modelle des DĂŒnndarms verwendet werden können. DarĂŒber hinaus begĂŒnstigt die einfache Handhabung und Zellexpansion unter kostengĂŒnstigeren Bedingungen im Vergleich zu primĂ€ren Organoidkulturen den Einsatz dieser neu-generierten Zellklone fĂŒr BioverfĂŒgbarkeits-Studien. Zusammenfassend zeigte diese Arbeit neue Komponenten, strukturelle und zellulĂ€re, fĂŒr die Etablierung alternativer in vitro-Modelle des DĂŒnndarmepithels, die in prĂ€klinischen Screenings fĂŒr reproduzierbare Studien hinsichtlich der Medikamententestung verwendet werden können

    Full thickness 3D in vitro conjunctiva model enables goblet cell differentiation

    No full text
    Abstract In vitro culture and generation of highly specialized goblet cells is still a major challenge in conjunctival 3D in vitro equivalents. A model comprising all physiological factors, including mucus-secreting goblet cells has the potential to act as a new platform for studies on conjunctival diseases. We isolated primary conjunctival epithelial cells and fibroblasts from human biopsies. 3D models were generated from either epithelial layers or a combination of those with a connective tissue equivalent. Epithelial models were investigated for marker expression and barrier function. Full-thickness models were analyzed for goblet cell morphology and marker expression via immunofluorescence and quantitative real-time PCR. Simple epithelial models cultured at the air–liquid interface showed stratified multi-layer epithelia with pathologic keratinization and without goblet cell formation. The combination with a connective tissue equivalent to generate a full-thickness model led to the formation of a non-keratinized stratified multi-layer epithelium and induced goblet cell differentiation. In our model, a high resemblance to natural conjunctiva was achieved by the combination of conjunctival epithelial cells with fibroblasts embedded in a collagen-hydrogel as connective tissue equivalent. In the future, our conjunctival in vitro equivalent enables the investigation of goblet cell differentiation, conjunctival pathologies as well as drug testing

    Screening applications to test cellular fitness in transwellÂź models after nanoparticle treatment

    No full text
    Nanoparticles (NPs) in biotechnology hold great promise for revolutionizing medical treatments and therapies. In order to bring NPs into clinical application there is a number of preclinical in vitro and in vivo tests, which have to be applied before. The initial in vitro evaluation includes a detailed physicochemical characterization as well as biocompatibility tests, among others. For determination of biocompatibility at the cellular level, the correct choice of the in vitro assay as well as NP pretreatment is absolutely essential. There are a variety of assay technologies available that use standard plate readers to measure metabolic markers to estimate the number of viable cells in culture. Each cell viability assay has its own set of advantages and disadvantages. Regardless of the assay method chosen, the major factors critical for reproducibility and success include: (1) choosing the right assay after comparing optical NP properties with the read-out method of the assay, (2) verifying colloidal stability of NPs in cell culture media, (3) preparing a sterile and stable NP dispersion in cell culture media used in the assay, (4) using a tightly controlled and consistent cell model allowing appropriate characterization of NPs. This chapter will briefly summarize these different critical points, which can occur during biocompatibility screening applications of NPs
    corecore