52 research outputs found

    Bank Vole Prion Protein As an Apparently Universal Substrate for RT-QuIC-Based Detection and Discrimination of Prion Strains

    Get PDF
    Prions propagate as multiple strains in a wide variety of mammalian species. The detection of all such strains by a single ultrasensitive assay such as Real Time Quaking-induced Conversion (RT-QuIC) would facilitate prion disease diagnosis, surveillance and research. Previous studies have shown that bank voles, and transgenic mice expressing bank vole prion protein, are susceptible to most, if not all, types of prions. Here we show that bacterially expressed recombinant bank vole prion protein (residues 23-230) is an effective substrate for the sensitive RT-QuIC detection of all of the different prion types that we have tested so far--a total of 28 from humans, cattle, sheep, cervids and rodents, including several that have previously been undetectable by RT-QuIC or Protein Misfolding Cyclic Amplification. Furthermore, comparison of the relative abilities of different prions to seed positive RT-QuIC reactions with bank vole and not other recombinant prion proteins allowed discrimination of prion strains such as classical and atypical L-type bovine spongiform encephalopathy, classical and atypical Nor98 scrapie in sheep, and sporadic and variant Creutzfeldt-Jakob disease in humans. Comparison of protease-resistant RT-QuIC conversion products also aided strain discrimination and suggested the existence of several distinct classes of prion templates among the many strains tested

    Real time quaking-induced conversion analysis of cerebrospinal fluid in sporadic Creutzfeldt-Jakob disease

    Get PDF
    OBJECTIVE: Current cerebrospinal fluid (CSF) tests for sporadic Creutzfeldt-Jakob disease (sCJD) are based on the detection of surrogate markers of neuronal damage such as CSF 14-3-3 which are not specific for sCJD. A number of prion protein conversion assays have been developed, including real-time quaking induced conversion (RT-QuIC). The objective of this study is to investigate whether CSF RT-QuIC analysis could be used as a diagnostic test in sCJD. METHODS: An exploratory study was undertaken which analysed 108 CSF samples from patients with neuropathologically confirmed sCJD or from control patients. Of the 108 CSF samples 56 were from sCJD patients (30 female, 26 male, aged 31–84 years; 62.3 ± 13.5 years) and 52 were from control patients (26 female, 26 male, aged 43–84 years; 67.8 ± 10.4 years). A confirmatory group of 118 patients were subsequently examined which consisted of 67 cases of neuropathologically confirmed sCJD (33 female, 34 male, aged 39–82 years; 67.5 ± 9.0 years) and 51 control cases (26 female, 25 male, aged 36–87 years; 63.5 ± 11.6 years). RESULTS: The exploratory study showed that RT-QuIC analysis had a sensitivity of 91% and a specificity of 98% for the diagnosis of sCJD. These results were confirmed in the confirmatory study which showed that CSF RT-QuIC analysis had a sensitivity and specificity of 87% and 100% respectively. INTERPRETATION: This study shows that CSF RT-QuIC analysis has the potential to be a more specific diagnostic test for sCJD than current CSF tests

    Rapid End-Point Quantitation of Prion Seeding Activity with Sensitivity Comparable to Bioassays

    Get PDF
    A major problem for the effective diagnosis and management of prion diseases is the lack of rapid high-throughput assays to measure low levels of prions. Such measurements have typically required prolonged bioassays in animals. Highly sensitive, but generally non-quantitative, prion detection methods have been developed based on prions' ability to seed the conversion of normally soluble protease-sensitive forms of prion protein to protease-resistant and/or amyloid fibrillar forms. Here we describe an approach for estimating the relative amount of prions using a new prion seeding assay called real-time quaking induced conversion assay (RT-QuIC). The underlying reaction blends aspects of the previously described quaking-induced conversion (QuIC) and amyloid seeding assay (ASA) methods and involves prion-seeded conversion of the alpha helix-rich form of bacterially expressed recombinant PrPC to a beta sheet-rich amyloid fibrillar form. The RT-QuIC is as sensitive as the animal bioassay, but can be accomplished in 2 days or less. Analogous to end-point dilution animal bioassays, this approach involves testing of serial dilutions of samples and statistically estimating the seeding dose (SD) giving positive responses in 50% of replicate reactions (SD50). Brain tissue from 263K scrapie-affected hamsters gave SD50 values of 1011-1012/g, making the RT-QuIC similar in sensitivity to end-point dilution bioassays. Analysis of bioassay-positive nasal lavages from hamsters affected with transmissible mink encephalopathy gave SD50 values of 103.5–105.7/ml, showing that nasal cavities release substantial prion infectivity that can be rapidly detected. Cerebral spinal fluid from 263K scrapie-affected hamsters contained prion SD50 values of 102.0–102.9/ml. RT-QuIC assay also discriminated deer chronic wasting disease and sheep scrapie brain samples from normal control samples. In principle, end-point dilution quantitation can be applied to many types of prion and amyloid seeding assays. End point dilution RT-QuIC provides a sensitive, rapid, quantitative, and high throughput assay of prion seeding activity

    Use of different RT-QuIC substrates for detecting CWD prions in the brain of Norwegian cervids

    Get PDF
    Chronic wasting disease (CWD) is a highly contagious prion disease affecting captive and free-ranging cervid populations. CWD has been detected in United States, Canada, South Korea and, most recently, in Europe (Norway, Finland and Sweden). Animals with CWD release infectious prions in the environment through saliva, urine and feces sustaining disease spreading between cervids but also potentially to other non-cervids ruminants (e.g. sheep, goats and cattle). In the light of these considerations and due to CWD unknown zoonotic potential, it is of utmost importance to follow specific surveillance programs useful to minimize disease spreading and transmission. The European community has already in place specific surveillance measures, but the traditional diagnostic tests performed on nervous or lymphoid tissues lack sensitivity. We have optimized a Real-Time Quaking-Induced Conversion (RT-QuIC) assay for detecting CWD prions with high sensitivity and specificity to try to overcome this problem. In this work, we show that bank vole prion protein (PrP) is an excellent substrate for RT-QuIC reactions, enabling the detection of trace-amounts of CWD prions, regardless of prion strain and cervid species. Beside supporting the traditional diagnostic tests, this technology could be exploited for detecting prions in peripheral tissues from live animals, possibly even at preclinical stages of the disease

    Factors That Improve RT-QuIC Detection of Prion Seeding Activity

    No full text
    Rapid and sensitive detection of prions is important in managing prion diseases. The real-time quaking-induced conversion (RT-QuIC) assay for prion seeding activity has been applied to many prion diseases and provides for specific antemortem diagnostic testing. We evaluated RT-QuIC’s long-term consistency and varied multiple reaction parameters. Repeated assays of a single scrapie sample using multiple plate readers and recombinant prion protein (rPrPSen) substrates gave comparable results. N-terminal truncated hamster rPrPSen (residues 90–231) hastened both prion-seeded and prion-independent reactions but maintained a clear kinetic distinction between the two. Raising temperatures or shaking speeds accelerated RT-QuIC reactions without compromising specificity. When applied to nasal brushings from Creutzfeldt-Jakob disease patients, higher temperatures accelerated RT-QuIC kinetics, and the use of hamster rPrPSen (90–231) strengthened RT-QuIC responses. Elongation of shaking periods reduced scrapie-seeded reaction times, but continuous shaking promoted false-positive reactions. Furthermore, pH 7.4 provided for more rapid RT-QuIC reactions than more acidic pHs. Additionally, we show that small variations in the amount of sodium dodecyl sulfate (SDS) significantly impacted the assay. Finally, RT-QuIC performed in multiplate thermoshakers followed by fluorescence readings in separate plate readers enhanced assay throughput economically. Collectively, these results demonstrate improved speed, efficacy and practicality of RT-QuIC assays and highlight variables to be optimized for future applications

    Altered energy metabolism in Fatal Familial Insomnia cerebral organoids is associated with astrogliosis and neuronal dysfunction

    No full text
    Fatal familial insomnia (FFI) is a rare neurodegenerative disease caused by a dominantly inherited single amino acid substitution (D178N) within the prion protein (PrP). No in vitro human brain tissue model for this disease has previously been available. Consequently, how this mutation exerts its damaging effect on brain cells is still unknown. Using CRISPR-Cas9 engineered induced pluripotent stem cells, we made D178N cerebral organoids and compared these with isotype control organoids. We found that, in the absence of other hallmarks of FFI, the D178N organoids exhibited astrogliosis with cellular oxidative stress. Abnormal post-translational processing of PrP was evident but no tissue deposition or propagation of mis-folded PrP isoforms were observed. Neuronal electrophysiological function was compromised and levels of neurotransmitters, particularly acetylcholine and GABA, altered. Underlying these dysfunctions were changes in cellular energy homeostasis, with substantially increased glycolytic and Krebs cycle intermediates, and greater mitochondrial activity. This increased energy demand in D178N organoids was associated with increased mitophagy and depletion of lipid droplets, in turn resulting in shifts of cellular lipid composition. Using a double mutation (178NN) we could confirm that most changes were caused by the presence of the mutation rather than interaction with PrP molecules lacking the mutation. Our data strongly suggests that shifting biosynthetic intermediates and oxidative stress, caused by an imbalance of energy supply and demand, results in astrogliosis with compromised neuronal activity in FFI organoids. They further support that many of the disease associated changes are due to a corruption of PrP function and do not require propagation of PrP mis-folding. Author summary Fatal familial insomnia is a devastating disease characterized by progressively worsening sleep until the brain and body deterioration result in death. Degeneration of brain cells is associated with accumulation of mis-folded proteins called prions. The mis-folding of the prions is caused by a single point mutation, D178N, in the gene encoding the normal precursor protein of the prions, the prion protein. Herein, we have used a human brain model to investigate the how this mutation causes brain cell damage. Our findings show that the mutation causes brain cells to dysfunction without the need for mis-folding into prions. Brain cell dysfunction was associated with stress and abnormal metabolism in such a way as to change critical compounds needed for the brain cells to function correctly. The changes correlate with enhanced wakefulness, which could cause the sleep disturbance. Our data support that many of the disease associated changes are caused by the fatal familial insomnia D178N mutation corrupting prion protein function

    RT-QuIC detection of GSS P102L and lack of detection for GSS F198S, P102L* and sheep atypical Nor98 scrapie using hamster rPrP<sup>Sen</sup> 90–231.

    No full text
    <p>Serial dilutions (10<sup>-6</sup> to 10<sup>-9</sup>) of GSS P102L brain tissue dilutions were used to seed quadruplicate RT-QuIC reactions (red lines) with hamster 90–231 rPrP<sup>Sen</sup> as the substrate, 300mM NaCl, 0.002% SDS. The same rPrP<sup>Sen</sup> and RT-QuIC conditions listed above were used in reactions seeded with the designated brain tissue dilutions of GSS human patients with F198S (green line) or P102L* (gray line) <i>PRNP</i> point mutations, Alzheimer’s disease (AD, blue line), sheep without prion disease (blue line) or with Nor98 scrapie (orange line). Average ThT fluorescence readings from replicate wells for each type of sample were plotted as a function of time. Results are representative of similar findings from at least 10 independent experiments using hamster 90–231, hamster 23–231, human or hamster-sheep chimeric rPrP<sup>Sen</sup> substrates.</p

    Detection of GSS P102L, F198S and A117V PrP<sup>D</sup> types by RT-QuIC using BV rPrP<sup>Sen</sup>, 300mM NaCl and 0.001% SDS.

    No full text
    <p>Quadruplicate RT-QuIC reactions were seeded with 10<sup>-4</sup> dilutions of human frontal cortex brain tissue from GSS patients with the P102L (red lines), F198S (green lines), or A117V (magenta lines) <i>PRNP</i> mutation. Negative control reaction were seeded with 10<sup>-4</sup> dilutions of frontal cortex brain tissue from a cerebral ischemia patient (blue lines). A final SDS concentration of 0.002% (A and B) or 0.001% (C and D) in combination with 130 mM (A and C) or 300 mM (B and D) NaCl were used with BV rPrP<sup>Sen</sup>. Similar results were seen in three independent experiments. Traces from representative RT-QuIC experiments are the average of four replicate wells.</p

    Animal samples: prion disease, <i>Prnp</i> genotype and brain region.

    No full text
    <p>Prion disease, <i>Prnp</i> genotype and brain region for animal samples.</p><p><sup>†</sup> Sheep <i>Prnp</i> genotype at codons 136/154/171</p><p><sup>+</sup>Only dilutions of samples that were tested to end-point are displayed. Unless indicated all samples were tested at 10<sup>-4</sup> brain tissue dilutions.</p><p><sup>1</sup>Chronic Wasting Disease</p><p>Animal samples: prion disease, <i>Prnp</i> genotype and brain region.</p
    • …
    corecore