24 research outputs found

    Untersuchungen zum Einfluss glykatierter Lipoproteine geringer Dichte auf die humane Adipogenese

    Get PDF
    Diabetes mellitus (DM) Typ 2 und Adipositas sind zwei wichtige Facetten des Metabolischen Syndroms. Untersuchungen zeigten eine enge Korrelation zwischen diesen beiden Krankheitsbildern, die möglicherweise durch glykatierte Lipoproteine geringer Dichte (glykLDL), eine frĂŒhe Form von advanced glycation endproducts (AGE), bedingt sein könnte. Erhöhte Mengen glykLDL wurden im Blut von Patienten mit gestörter Glukosetoleranz (IGT) oder DM Typ 2 gefunden. Ziel der vorliegenden Arbeit war es, zu zeigen, ob glykLDL im Vergleich zu nativen LDL (nLDL) einen Einfluss auf die humane Adipogenese haben und welche Mechanismen dem zu Grunde liegen. Durch die Inkubation humaner LDL mit 200 mM Glukose fĂŒr 144 h, wurden die unter HyperglykĂ€mie in vivo stattfindenden, glykativen VerĂ€nderungen am Apolipoprotein B-100 (ApoB-100) der LDL simuliert. Als Modell fĂŒr die humane Adipogenese diente die Umwandlung von murinen 3T3-L1-PrĂ€adipozyten zu ausgereiften, runden Zellen, die sowohl morphologisch als auch physiologisch mit humanen Fettzellen vergleichbar sind

    Eph Receptors and Ephrin Ligands: Important Players in Angiogenesis and Tumor Angiogenesis

    Get PDF
    Eph receptors and their ephrin ligands were identified in the late 1980's. Subsequently, they were linked to different physiological and pathophysiological processes like embryonic development, angiogenesis, and tumorigenesis. In this regard, recent work focused on the distribution and effects of Eph receptors and ephrins on tumor cells and tumor microenvironment. The purpose of this review is to outline the role of these molecules in physiological angiogenesis and pathophysiological tumor angiogenesis. Furthermore, novel therapeutical approaches are discussed as Eph receptors and ephrins represent attractive targets for antiangiogenic therapy

    A novel ACE2 decoy for both neutralization of SARS-CoV-2 variants and killing of infected cells

    Get PDF
    The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) led to millions of infections and deaths worldwide. As this virus evolves rapidly, there is a high need for treatment options that can win the race against new emerging variants of concern. Here, we describe a novel immunotherapeutic drug based on the SARS-CoV-2 entry receptor ACE2 and provide experimental evidence that it cannot only be used for (i) neutralization of SARS-CoV-2 in vitro and in SARS-CoV-2-infected animal models but also for (ii) clearance of virus-infected cells. For the latter purpose, we equipped the ACE2 decoy with an epitope tag. Thereby, we converted it to an adapter molecule, which we successfully applied in the modular platforms UniMAB and UniCAR for retargeting of either unmodified or universal chimeric antigen receptor-modified immune effector cells. Our results pave the way for a clinical application of this novel ACE2 decoy, which will clearly improve COVID-19 treatment

    Legislative Documents

    Get PDF
    Also, variously referred to as: House bills; House documents; House legislative documents; legislative documents; General Court documents

    Eph-Rezeptoren und Ephrin-Liganden als molekulare Schnittstelle zwischen Melanomzellen und Tumor-assoziierten inflammatorischen Zellen

    No full text
    EINLEITUNG Das maligne Melanom stellt aufgrund seiner frĂŒhen Metastasierung und der Resistenz gegenĂŒber den bisher bekannten TherapieansĂ€tzen eine der aggressivsten TumorentitĂ€ten dar. Allerdings handelt es sich beim Melanom um einen antigenen und immunogenen Tumor. Dies schĂŒrt die Hoffnung, dass durch das bessere VerstĂ€ndnis der Mechanismen, die der Metastasierung, aber auch der Dysregulation des Immunsystems zugrunde liegen, RĂŒckschlĂŒsse auf neue TherapieansĂ€tze, beispielsweise unter Einbeziehung der Immunabwehr, gezogen werden können. DarĂŒber hinaus wĂŒrde die Entwicklung von Radiotracern, die eine frĂŒhzeitige Diagnose und möglicherweise auch die Auswahl von Patienten fĂŒr eine personalisierte Tumortherapie ermöglichen, die Heilungschancen des malignen Melanoms wesentlich verbessern. Das Eph-Ephrin-System wiederum stellt ein vielfĂ€ltiges Zellkommunikations-System dar, das sowohl in lebenswichtige als auch in pathologische Prozesse involviert ist. Beispielsweise nehmen Eph-Rezeptoren und Ephrine Einfluss auf die gerichtete Bewegung von neuronalen, endothelialen und inflammatorischen Zellen. Zudem beeinflussen sie die Bewegung von Tumorzellen und tragen so zur Tumorprogression bei. Ausgehend von diesem Hintergrund wurde die Hypothese formuliert, dass die Eph-Ephrin-vermittelte Interaktion von Melanomzellen und Tumor-assoziierten inflammatorischen Zellen die Progression und Metastasierung des malignen Melanoms beeinflusst. Im Speziellen sollte im Rahmen der vorliegenden Arbeit geprĂŒft werden, ob die Rezeptor-Tyrosinkinase EphB4 im Zusammenspiel mit seinem Liganden EphrinB2 die Progression und Metastasierung des malignen Melanoms fördert. DarĂŒber hinaus sollte getestet werden, ob der Rezeptor EphB6, der ebenfalls zur Bindung von EphrinB2 fĂ€hig ist, aber ĂŒber eine mutierte und damit funktionsunfĂ€hige KinasedomĂ€ne verfĂŒgt, eine regulative Rolle ĂŒbernimmt und antitumorigen wirkt. Aufbauend auf den Erkenntnissen zur Bedeutung von EphB4, EphB6 und EphrinB2 beim malignen Melanom sollten zudem verschiedene AnsĂ€tze zur Bildgebung der oben genannten Eph-Rezeptoren und Ephrine mittels PET etabliert und geprĂŒft werden. ERGEBNISSE UND DISKUSSION Im Rahmen der vorliegenden Arbeit wurde erstmalig gezeigt, dass die Membranproteine EphB4, EphB6 und EphrinB2 bei den ausgewĂ€hlten humanen Melanomzellen und den inflammatorischen Zellen exprimiert werden und somit potentielle Interaktionsmöglichkeiten dieser Zellen darstellen. Infolge der Kokultur mit HL-60(M)-Zellen, die als Modell fĂŒr Tumor-assoziierte Makrophagen dienten, kam es zu einer verminderten AdhĂ€sion und/oder Migration der Melanomzellen sowie im Falle der A375- und A2058-Melanomzellen zu einer verstĂ€rkten Sekretion des proinflammatorischen Zytokins IL-6. Aufgrund der breiten Wirkung von IL-6 ergeben sich daraus vielfĂ€ltige Einflussmöglichkeiten auf das Tumormikromilieu. Diese wurden im Rahmen der vorliegenden Arbeit jedoch nicht nĂ€her charakterisiert, da erste Ergebnisse eine Beteiligung des Eph-Ephrin-Systems ausschlossen. WĂ€hrend die Überexpression von EphB6 keinen Einfluss auf die Metastasierungs-relevanten Eigenschaften der A375-Melanomzellen hatte, fĂŒhrte die erhöhte Proteinbiosynthese von EphB4 zu einer verminderten Migration der Zellen im intakten Zellverband. Des Weiteren bewirkte EphB4 eine verstĂ€rkte AdhĂ€sion der A375-Zellen an das Extrazellularmatrix-Protein Fibronektin, wodurch die Migration dieser Melanomzellen, im Sinne einer Metastasierung, zusĂ€tzlich beeintrĂ€chtigt wird. Die erhöhte mRNA-Expression des Liganden EphrinB2 in den A375-Melanomzellen fĂŒhrte zu einer verminderten chemotaktischen Migration der Zellen. Um den Einfluss von EphB4 auf die Tumorprogression und Tumorangiogenese beim malignen Melanom in vivo untersuchen zu können, wurde im Rahmen der vorliegenden Arbeit ein murines Xenograft-Modell mit subkutanen A375 pIRES- bzw. A375 EphB4-Tumoren etabliert. Die Auswertung der Tumorvolumina sowie der [18F]FDG-, [18F]FMISO- und Hoechst 33342-Anreicherung in den Tumoren ergab, dass die erhöhte EphB4-Proteinbiosynthese zu tendenziell kleineren Tumoren fĂŒhrte. Diese waren zudem signifikant schwĂ€cher perfundiert und wiesen im Inneren grĂ¶ĂŸere hypoxische Areale auf als die A375 pIRES-Tumoren. Somit zeigte EphB4 neben seiner antimetastasischen Wirkung in vitro auch eine antitumorigene Wirkung in vivo, wobei letztere möglicherweise auf eine Störung der GefĂ€ĂŸbildung zurĂŒckzufĂŒhren ist. Da eine adĂ€quate Blutversorgung der Tumoren fĂŒr die Metastasierung von Tumorzellen von Bedeutung ist, könnte dies auch auf eine antimetastatische Wirkung in vivo hinweisen. Des Weiteren wurde im Rahmen der vorliegenden Arbeit ein neuer, 18F-markierter EphB4 Kinaseinhibitor (Verbindung [18F]2) getestet. Dieser zeigte im A375-pIRES/EphB4-Tumor-Xenograft-Modell eine geringe Tumoranreicherung, die von der EphB4-Proteinbiosynthese in den Tumoren unabhĂ€ngig war. DarĂŒber hinaus kam es zur schnellen hepatobiliĂ€ren Ausscheidung von Verbindung [18F]2, was deren radiopharmazeutischer Anwendung im Wege steht. SCHLUSSFOLGERUNG UND AUSBLICK Insbesondere die erhöhte Proteinbiosynthese von EphB4 hatte im Falle der untersuchten A375-Melanomzellen zu einer verminderten Migration und zu einer erhöhten AdhĂ€sion der Zellen gefĂŒhrt. Somit konnte im Rahmen der vorliegenden Arbeit gezeigt werden, dass EphB4 die Metastasierungs-relevanten Eigenschaften dieser Zellen in vitro beeintrĂ€chtigt. DarĂŒber hinaus deuteten Untersuchungen am A375-pIRES/EphB4-Tumor-Xenograft-Modell auf eine antitumorigene Wirkung des EphB4-Rezeptors in vivo hin. Aufgrund dessen muss der anfĂ€nglich formulierten Hypothese, dass EphB4 im Zusammenspiel mit seinem Liganden EphrinB2 die Progression und Metastasierung des malignen Melanoms fördert, widersprochen werden. Eine regulative Beteiligung des Kinase-defizienten Rezeptors EphB6, der ebenfalls zur Bindung von EphrinB2 fĂ€hig ist, konnte im Rahmen der vorliegenden Arbeit nicht sicher nachgewiesen werden. Allerdings ergeben sich aufgrund der Expression der Rezeptoren EphB4 und EphB6 sowie deren Ligand EphrinB2 sowohl auf den untersuchten Melanomzellen als auch auf den verschiedenen Tumor-assoziierten inflammatorischen Zellen interessante Interaktionsmöglichkeiten dieser Zellen. Deren Einfluss auf die Progression und Metastasierung des malignen Melanoms sollte in weiterfĂŒhrenden Experimenten untersucht werden. Das im Rahmen der vorliegenden Arbeit etablierte A375-pIRES/EphB4-Tumor-Xenograft-Modell ermöglicht die In vivo-Charakterisierung von Radiotracer, die gegen Rezeptor-Tyrosinkinasen im Allgemeinen oder aber selektiv gegen EphB4 gerichtet sind. Da Verbindung [18F]2 eine ungĂŒnstige Pharmakokinetik zeigte, was wahrscheinlich auf die hohe Lipophilie des Radiotracers zurĂŒckzufĂŒhren ist, sollten sich zukĂŒnftige Untersuchungen mit der chemischen Modifikation dieser Verbindung beschĂ€ftigen, mit dem Ziel die Lipophilie und damit die biologische Halbwertszeit des Radiotracers zu verbessern. ZusĂ€tzlich sollte die Entwicklung von Radiotracern auf der Basis von löslichen Eph-Rezeptoren und Ephrinen (sEph bzw. sEphrin) weiter vorangetrieben werden.:1 EINLEITUNG 1.1 Die Bedeutung des Tumor-Mikromilieus bei der Entstehung des malignen Melanoms 1.2 Die Metastasierung des malignen Melanoms als limitierender Einflussfaktor auf die Tumortherapie 1.3 Die Rolle des Eph-Ephrin-Systems bei der Tumorprogression und Metastasierung 1.4 Zielstellung 2 MATERIAL UND METHODEN 2.1 Material 2.1.1 Eukaryotische Zellen 2.1.2 Prokaryotische Zellen 2.1.3 Versuchstiere 2.1.4 Plasmide 2.1.5 Kits 2.1.6 Antikörper 2.1.7 Verbrauchsmaterialien 2.1.8 Chemikalien, Medien und Enzyme 2.1.9 Puffer und Lösungen 2.1.10 GerĂ€te 2.2 Molekularbiologische Methoden 2.2.1 RNA-Isolierung aus Zellen 2.2.2 DNase-Behandlung 2.2.3 Quantitative Echtzeit RT-PCR (qRT-PCR) 2.2.4 Klonierung von humanem EphB4, EphB6 und EphrinB2 in den eukaryotischen Expressionsvektor pIRES2-AcGFP1 2.2.4.1 Prinzip 2.2.4.2 Restriktionshydrolyse 2.2.4.3 Dephosphorylierung und GlĂ€ttung der cDNA mittels Alkalischer Phosphatase und Klenow-Fragment 2.2.4.4 Agarose-Gelelektrophorese 2.2.4.5 Gelextraktion 2.2.4.6 Ligation 2.2.4.7 Herstellung Transformations-kompetenter E. coli 2.2.4.8 Transformation kompetenter E. coli 2.2.4.9 Plasmid-Isolierung 2.2.5 Klonierung von humanem sEphB4, sEphB6 und sEphrinB2 in den eukaryotischen Expressionsvektor pSecTag2B 2.2.5.1 Prinzip 2.2.5.2 PCR zur Gewinnung der cDNA fĂŒr sEphrinB2, sEphB4 und sEphB6 2.2.5.3 Agarose-Gelelektrophorese und Gelextraktion 2.2.5.4 TOPO-TA-Klonierung, Transformation und Plasmid-Isolierung 2.2.5.5 Restriktionshydrolyse, Ligation, Transformation und Plasmid-Isolierung 2.3 Zellbiologische Methoden 2.3.1 Kultivierung eukaryotischer Zellen 2.3.2 Kontrolle von Zellkulturen auf Mykoplasmen-Kontamination 2.3.3 Kryokonservierung und Rekultivierung von Zellen 2.3.4 Transfektion und Antibiotikaselektion von COS-7-Zellen 2.3.5 Transfektion und Antibiotika-Selektion von A375-Zellen 2.3.6 Fluoreszenz-aktivierte Zellanalyse und -sortierung (FACS) von transfizierten A375-Zellen 2.3.7 Fluoreszenzmikroskopie von transfizierten A375-Zellen 2.3.8 Bestimmung der Zellproliferation und ZellvitalitĂ€t mittels Wachstumskurve 2.3.9 Differenzierung humaner THP-1-LeukĂ€miezellen zu Makrophagen-artigen Zellen (THP-1(M)) 2.3.10 Differenzierung humaner HL-60-LeukĂ€miezellen zu Makrophagen-artigen (HL-60(M)) und Granulozyten-artigen (HL-60(G)) Zellen 2.3.11 Kokultivierung humaner Melanomzellen mit HL-60(M) und anschließende Trennung mittels Magnet-aktivierter Zell Separierung (MACS) 2.3.12 AdhĂ€sionsassay 2.3.12.1 AdhĂ€sion an Fibronektin 2.3.12.2 AdhĂ€sion an HL-60(M)-Zellen 2.3.13 Migrationsassay 2.3.13.1 Boyden-Kammer-Assay 2.3.13.2 Wundheilungsassay 2.4 Proteinbiochemische Methoden 2.4.1 Proteinisolierung aus Zellkulturen 2.4.2 Proteinisolierung aus Gewebeproben 2.4.3 Proteinbestimmung 2.4.4 SDS-PAGE 2.4.5 Western Blotting und Immundetektion 2.4.6 Enzym-gekoppelter Immunadsorptionsassay (ELISA) 2.4.6.1 IL-6-ELISA 2.4.6.2 pEphB4-ELISA 2.4.7 Gewinnung und Reinigung der rekombinanten, löslichen Eph Rezeptoren sEphB4 und sEphB6 2.4.7.1 Gewinnung von COS-7-ZellkulturĂŒberstĂ€nden 2.4.7.2 Reinigung von sEphB4 und sEphB6 aus den COS-7-ZellkulturĂŒberstĂ€nden mittels Ni2+-AffinitĂ€tschromatographie 2.4.7.3 Regeneration der Ni2+-NTA-Agarose 2.4.7.4 Entfernung von Salzen und Imidazol mittels Schneller Protein-FlĂŒssigkeitschromatographie (FPLC) 2.4.7.5 Entfernung von Salzen und Imidazol mit Hilfe von Zentrifugalkonzentratoren 2.4.7.6 Gefriertrocknung 2.5 Tierexperimentelle Arbeiten 2.5.1 Etablierung eines murinen Tumor-Xenograft-Modells mit subkutanen A375-pIRES/EphB4-Tumoren 2.5.2 Fluoreszenz-Bildgebung 2.5.3 Magnet-Resonanz-Tomographie 2.5.4 Untersuchung der Tumorperfusion mittels Hoechst 33342 2.6 Radiochemische und Radiopharmakologische Methoden 2.6.1 Darstellung und Radiomarkierung von EphB4-Kinaseinhibitoren 2.6.2 Untersuchung des Einflusses der Verbindungen 2 auf die Zellproliferation und ZellvitalitĂ€t mittels MTT-Test 2.6.3 Untersuchung der zellulĂ€ren Bindung und Aufnahme der Verbindung [18F]2 2.6.4 Kleintier-Positronen-Emissions-Tomographie 2.6.5 Bioverteilung 2.6.6 Metabolitenanalyse 2.6.7 Autoradiographie 2.7 Histologische Methoden 2.7.1 Anfertigung von Gefrierschnitten 2.7.2 Nachweis von Hoechst 33342 in Gefrierschnitten 2.7.3 Anfertigung von Paraffinschnitten 2.7.4 Nachweis von EphB4 in Paraffinschnitten 2.8 Statistische Auswertung 3 ERGEBNISSE 3.1 Genexpression von EphB4, EphB6 und EphrinB2 bei humanen LeukĂ€mie- und Melanomzellen 3.2 Proteinbiosynthese von EphB4, EphB6 und EphrinB2 bei humanen LeukĂ€mie- und Melanomzellen 3.3 Kokultivierung humaner Melanomzellen mit HL-60(M) 3.3.1 Etablierung eines Kokultur-Modells mit anschließender Trennung der humanen Melanomzellen von den HL 60(M)-Zellen 3.3.2 Einfluss der Kokultur auf das AdhĂ€sions- und Migrationsverhalten der humanen Melanomzellen 3.3.2.1 AdhĂ€sionsassay 3.3.2.2 Migrationsassay 3.3.3 Einfluss der Kokultur auf die Sekretion von Interleukin-6 durch die humanen LeukĂ€mie- und Melanomzellen 3.4 Überexpression von EphB4, EphB6 und EphrinB2 bei A375 Melanomzellen 3.4.1 Fluoreszenzmikroskopie und FACS 3.4.2 mRNA-Expression von EphB4, EphB6 und EphrinB2 3.4.3 Proteinbiosynthese von EphB4, EphB6 und EphrinB2 3.4.4 Proliferationsverhalten 3.5 Einfluss von EphB4, EphB6 und EphrinB2 auf das AdhĂ€sions- und Migrationsverhalten von A375-Melanomzellen 3.5.1 Einfluss auf die AdhĂ€sion 3.5.1.1 AdhĂ€sion an Fibronektin 3.5.1.2 AdhĂ€sion an HL-60(M)-Zellen 3.5.2 Einfluss auf die Migration 3.5.2.1 Boyden-Kammer-Assay 3.5.2.2 Wundheilungsassay 3.5.3 Einfluss der Kokultur mit HL-60(M)-Zellen auf das AdhĂ€sions- und Migrationsverhalten der A375-Melanomzellen 3.6 Einfluss von EphB4, EphB6 und EphrinB2 auf das inflammatorische Potential von A375-Melanomzellen und HL 60(M)-Zellen 3.7 Charakterisierung eines murinen Tumor-Xenograft-Modells mit subkutanen A375-pIRES/EphB4-Tumoren 3.7.1 Charakterisierung des Tumorwachstums 3.7.2 Nachweis der EphB4-Proteinbiosynthese 3.7.3 Charakterisierung des Tumormetabolismus und der Tumorperfusion mit [18F]FDG 3.7.4 Charakterisierung der Tumorperfusion mit Hoechst 33342 3.7.5 Charakterisierung der CD31-Proteinbiosynthese 3.7.6 Charakterisierung hypoxischer Areale mit [18F]FMISO 3.8 Charakterisierung eines neuen, 18F-radiomarkierten EphB4-Kinaseinhibitors als Radiotracer zur Bildgebung von EphB4 mittels Kleintier-PET 3.8.1 Einfluss von Verbindung 2 auf die Zellproliferation und ZellvitalitĂ€t 3.8.2 Einfluss von Verbindung 2 auf die EphB4-Phosphorylierung 3.8.3 Charakterisierung der Zellaufnahme von Verbindung [18F]2 3.8.4 Charakterisierung des In-vivo-Metabolismus von Verbindung [18F]2 im A375-pIRES/EphB4-Tumor-Xenograft-Modell 3.8.4.1 Kleintier-Positronen-Emissions-Tomographie 3.8.4.2 Autoradiographie 3.8.4.3 Bioverteilung 3.8.4.4 Metabolitenanalyse 3.9 Reinigung und Charakterisierung rekombinanter, löslicher Eph-Rezeptoren 3.9.1 Proteinbiosynthese und Sekretion von sEphB4 und sEphB6 3.9.2 Reinigung von rekombinantem sEphB4 und sEphB6 aus COS-7-ZellkulturĂŒberstĂ€nden 4 DISKUSSION 4.1 Therapiemöglichkeiten und Bedeutung von Tumor-assoziierten inflammatorischen Zellen beim malignen Melanom 4.2 Vorkommen von EphB4, EphB6 und EphrinB2 bei humanen Melanomzellen und inflammatorischen Zellen 4.3 Einfluss der Kokultur von Melanomzellen mit HL-60(M) auf die metastatischen und inflammatorischen Eigenschaften der Zellen 4.4 Einfluss von EphB4 auf das Wachstum und die Vaskularisierung von A375-Tumoren in vivo 4.5 Kinaseinhibitoren als potentielle Radiotracer fĂŒr die In vivo-Bildgebung von Eph-Rezeptoren 4.6 Entwicklung löslicher Eph-Rezeptoren und Ephrin-Liganden als Grundlage fĂŒr die In vivo-Bildgebung des Eph-Ephrin-Systems 5 SCHLUSSFOLGERUNGEN UND AUSBLICK 6 ZUSAMMENFASSUNG 7 LITERATURVERZEICHNIS 8 DANKSAGUNG 9 VERÖFFENTLICHUNGEN UND KONFERENZBEITRÄG

    The pyrazolo[3,4- d]pyrimidine-based kinase inhibitor NVP-BHG712: effects of regioisomers on tumor growth, perfusion, and hypoxia in EphB4-positive A375 melanoma xenografts

    No full text
    In a previous study, EphB4 was demonstrated to be a positive regulator of A375-melanoma growth but a negative regulator of tumor vascularization and perfusion. To distinguish between EphB4 forward and ephrinB2 reverse signaling, we used the commercially available EphB4 kinase inhibitor NVP-BHG712 (NVP), which was later identified as its regioisomer NVPiso. Since there have been reported significant differences between the inhibition profiles of NVP and NVPiso, we compared the influence of NVP and NVPiso on tumor characteristics under the same experimental conditions. Despite the different inhibitory profiles of NVP and NVPiso, the comparative study conducted here showed the same EphB4-induced effects in vivo as in the previous investigation. This confirmed the conclusion that EphB4-ephrinB2 reverse signaling is responsible for increased tumor growth as well as decreased tumor vascularization and perfusion. These results are further substantiated by microarrays showing differences between mock-transfected and EphB4-transfected (A375-EphB4) cells with respect to at least 9 angiogenesis-related proteins. Decreased expression of vascular endothelial growth factor (VEGF), angiotensin 1 (Ang-1), and protein kinase B (Akt/PKB), together with the increased expression of tissue inhibitor of metalloproteinase-1 (TIMP-1) and transforming growth factor beta-2 (TGF-ÎČ2), is consistent with the impaired vascularization of A375-EphB4 xenografts. Functional overexpression of EphB4 in A375-EphB4 cells was confirmed by activation of a variety of signaling pathways, including the Janus kinase/signal transducers and activators of transcription (JAK/STAT), rat sarcoma virus/rapidly accelerated fibrosarcoma/mitogen activated protein kinase kinase (Ras/Raf/MEK), and nuclear factor kappa-B (NFkB) pathways

    Microdialysis Reveals Anti-Inflammatory Effects of Sulfated Glycosaminoglycanes in the Early Phase of Bone Healing

    No full text
    Although chronic inflammation inhibits bone healing, the healing process is initiated by an inflammatory phase. In a well-tuned sequence of molecular events, pro-inflammatory cytokines are secreted to orchestrate the inflammation response to injury and the recruitment of progenitor cells. These events in turn activate the secretion of anti-inflammatory signaling molecules and attract cells and mediators that antagonize the inflammation and initiate the repair phase. Sulfated glycosaminoglycanes (sGAG) are known to interact with cytokines, chemokines and growth factors and, thus, alter the availability, duration and impact of those mediators on the local molecular level. sGAG-coated polycaprolactone-co-lactide (PCL) scaffolds were inserted into critical-size femur defects in adult male Wistar rats. The femur was stabilized with a plate, and the defect was filled with either sGAG-containing PCL scaffolds or autologous bone (positive control). Wound fluid samples obtained by microdialysis were characterized regarding alterations of cytokine concentrations over the first 24 h after surgery. The analyses revealed the inhibition of the pro-inflammatory cytokines IL-1ÎČ and MIP-2 in the sGAG-treated groups compared to the positive control. A simultaneous increase of IL-6 and TNF-α indicated advanced regenerative capacity of sGAG, suggesting their potential to improve bone healing

    Adjuvant Drug-Assisted Bone Healing: Advances and Challenges in Drug Delivery Approaches

    No full text
    Bone defects of critical size after compound fractures, infections, or tumor resections are a challenge in treatment. Particularly, this applies to bone defects in patients with impaired bone healing due to frequently occurring metabolic diseases (above all diabetes mellitus and osteoporosis), chronic inflammation, and cancer. Adjuvant therapeutic agents such as recombinant growth factors, lipid mediators, antibiotics, antiphlogistics, and proangiogenics as well as other promising anti-resorptive and anabolic molecules contribute to improving bone healing in these disorders, especially when they are released in a targeted and controlled manner during crucial bone healing phases. In this regard, the development of smart biocompatible and biostable polymers such as implant coatings, scaffolds, or particle-based materials for drug release is crucial. Innovative chemical, physico- and biochemical approaches for controlled tailor-made degradation or the stimulus-responsive release of substances from these materials, and more, are advantageous. In this review, we discuss current developments, progress, but also pitfalls and setbacks of such approaches in supporting or controlling bone healing. The focus is on the critical evaluation of recent preclinical studies investigating different carrier systems, dual- or co-delivery systems as well as triggered- or targeted delivery systems for release of a panoply of drugs

    Overexpression of Receptor Tyrosine Kinase EphB4 Triggers Tumor Growth and Hypoxia in A375 Melanoma Xenografts: Insights from Multitracer Small Animal Imaging Experiments

    No full text
    Experimental evidence has associated receptor tyrosine kinase EphB4 with tumor angiogenesis also in malignant melanoma. Considering the limited in vivo data available, we have conducted a systematic multitracer and multimodal imaging investigation in EphB4-overexpressing and mock-transfected A375 melanoma xenografts. Tumor growth, perfusion, and hypoxia were investigated by positron emission tomography. Vascularization was investigated by fluorescence imaging in vivo and ex vivo. The approach was completed by magnetic resonance imaging, radioluminography ex vivo, and immunohistochemical staining for blood and lymph vessel markers. Results revealed EphB4 to be a positive regulator of A375 melanoma growth, but a negative regulator of tumor vascularization. Resulting in increased hypoxia, this physiological characteristic is considered as highly unfavorable for melanoma prognosis and therapy outcome. Lymphangiogenesis, by contrast, was not influenced by EphB4 overexpression. In order to distinguish between EphB4 forward and EphrinB2, the natural EphB4 ligand, reverse signaling a specific EphB4 kinase inhibitor was applied. Blocking experiments show EphrinB2 reverse signaling rather than EphB4 forward signaling to be responsible for the observed effects. In conclusion, functional expression of EphB4 is considered a promising differentiating characteristic, preferentially determined by non-invasive in vivo imaging, which may improve personalized theranostics of malignant melanoma

    Impact of Sulfated Hyaluronan on Bone Metabolism in Diabetic Charcot Neuroarthropathy and Degenerative Arthritis

    No full text
    Bone in diabetes mellitus is characterized by an altered microarchitecture caused by abnormal metabolism of bone cells. Together with diabetic neuropathy, this is associated with serious complications including impaired bone healing culminating in complicated fractures and dislocations, especially in the lower extremities, so-called Charcot neuroarthropathy (CN). The underlying mechanisms are not yet fully understood, and treatment of CN is challenging. Several in vitro and in vivo investigations have suggested positive effects on bone regeneration by modifying biomaterials with sulfated glycosaminoglycans (sGAG). Recent findings described a beneficial effect of sGAG for bone healing in diabetic animal models compared to healthy animals. We therefore aimed at studying the effects of low- and high-sulfated hyaluronan derivatives on osteoclast markers as well as gene expression patterns of osteoclasts and osteoblasts from patients with diabetic CN compared to non-diabetic patients with arthritis at the foot and ankle. Exposure to sulfated hyaluronan (sHA) derivatives reduced the exaggerated calcium phosphate resorption as well as the expression of genes associated with bone resorption in both groups, but more pronounced in patients with CN. Moreover, sHA derivatives reduced the release of pro-inflammatory cytokines in osteoclasts of patients with CN. The effects of sHA on osteoblasts differed only marginally between patients with CN and non-diabetic patients with arthritis. These results suggest balancing effects of sHA on osteoclastic bone resorption parameters in diabetes
    corecore