26 research outputs found

    Compulsive methamphetamine taking in the presence of punishment is associated with increased oxytocin expression in the nucleus accumbens of rats

    Get PDF
    Methamphetamine addiction is mimicked in rats that self-administer the drug. However, these self-administration (SA) models do not include adverse consequences that are necessary to reach a diagnosis of addiction in humans. Herein, we measured genome-wide transcriptional consequences of methamphetamine SA and footshocks in the rat brain. We trained rats to self-administer methamphetamine for 20 days. Thereafter, lever-presses for methamphetamine were punished by mild footshocks for 5 days. Response-contingent punishment significantly reduced methamphetamine taking in some rats (shock-sensitive, SS) but not in others (shock-resistant, SR). Rats also underwent extinction test at one day and 30 days after the last shock session. Rats were euthanized one day after the second extinction test and the nucleus accumbens (NAc) and dorsal striatum were collected to measure gene expression with microarray analysis. In the NAc, there were changes in the expression of 13 genes in the SRvsControl and 9 genes in the SRvsSS comparison. In the striatum, there were 9 (6 up, 3 down) affected genes in the SRvsSS comparison. Among the upregulated genes was oxytocin in the NAc and CARTpt in the striatum of SR rats. These observations support a regional role of neuropeptides in the brain after a long withdrawal interval when animals show incubation of methamphetamine craving

    Methamphetamine Causes Differential Alterations in Gene Expression and Patterns of Histone Acetylation/Hypoacetylation in the Rat Nucleus Accumbens

    Get PDF
    Methamphetamine (METH) addiction is associated with several neuropsychiatric symptoms. Little is known about the effects of METH on gene expression and epigenetic modifications in the rat nucleus accumbens (NAC). Our study investigated the effects of a non-toxic METH injection (20 mg/kg) on gene expression, histone acetylation, and the expression of the histone acetyltransferase (HAT), ATF2, and of the histone deacetylases (HDACs), HDAC1 and HDAC2, in that structure. Microarray analyses done at 1, 8, 16 and 24 hrs after the METH injection identified METH-induced changes in the expression of genes previously implicated in the acute and longterm effects of psychostimulants, including immediate early genes and corticotropin-releasing factor (Crf). In contrast, the METH injection caused time-dependent decreases in the expression of other genes including Npas4 and cholecystokinin (Cck). Pathway analyses showed that genes with altered expression participated in behavioral performance, cell-to-cell signaling, and regulation of gene expression. PCR analyses confirmed the changes in the expression of c-fos, fosB, Crf, Cck, and Npas4 transcripts. To determine if the METH injection caused post-translational changes in histone markers, we used western blot analyses and identified METH-mediated decreases in histone H3 acetylated at lysine 9 (H3K9ac) and lysine 18 (H3K18ac) in nuclear sub-fractions. In contrast, the METH injection caused time-dependent increases in acetylated H4K5 and H4K8. The changes in histone acetylation were accompanied by decreased expression of HDAC1 but increased expression of HDAC2 protein levels. The histone acetyltransferase, ATF2, showed significant METH-induced increased in protein expression. These results suggest that METH-induced alterations in global gene expression seen in rat NAC might be related, in part, to METH-induced changes in histone acetylation secondary to changes in HAT and HDAC expression. The causal role that HATs and HDACs might play in METH-induced gene expression needs to be investigated further

    Methamphetamine-Induced Dopamine-Independent Alterations in Striatal Gene Expression in the 6-Hydroxydopamine Hemiparkinsonian Rats

    Get PDF
    Unilateral injections of 6-hydroxydopamine into the medial forebrain bundle are used extensively as a model of Parkinson's disease. The present experiments sought to identify genes that were affected in the dopamine (DA)–denervated striatum after 6-hydroxydopamine-induced destruction of the nigrostriatal dopaminergic pathway in the rat. We also examined whether a single injection of methamphetamine (METH) (2.5 mg/kg) known to cause changes in gene expression in the normally DA-innervated striatum could still influence striatal gene expression in the absence of DA. Unilateral injections of 6-hydroxydopamine into the medial forebrain bundle resulted in METH-induced rotational behaviors ipsilateral to the lesioned side and total striatal DA depletion on the lesioned side. This injection also caused decrease in striatal serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) levels. DA depletion was associated with increases in 5-HIAA/5-HT ratios that were potentiated by the METH injection. Microarray analyses revealed changes (± 1.7-fold, p<0.025) in the expression of 67 genes on the lesioned side in comparison to the intact side of the saline-treated hemiparkinsonian animals. These include follistatin, neuromedin U, and tachykinin 2 which were up-regulated. METH administration caused increases in the expression of c-fos, Egr1, and Nor-1 on the intact side. On the DA-depleted side, METH administration also increased the expression of 61 genes including Pdgf-d and Cox-2. There were METH-induced changes in 16 genes that were common in the DA-innervated and DA-depleted sides. These include c-fos and Nor-1 which show greater changes on the normal DA side. Thus, the present study documents, for the first time, that METH mediated DA-independent changes in the levels of transcripts of several genes in the DA-denervated striatum. Our results also implicate 5-HT as a potential player in these METH-induced alterations in gene expression because the METH injection also caused significant increases in 5-HIAA/5-HT ratios on the DA-depleted side

    Transcriptional and Epigenetic Substrates of Methamphetamine Addiction and Withdrawal: Evidence from a Long-Access Self-Administration Model in the Rat

    Get PDF

    Enhanced Upregulation of CRH mRNA Expression in the Nucleus Accumbens of Male Rats after a Second Injection of Methamphetamine Given Thirty Days Later

    Get PDF
    <div><p>Methamphetamine (METH) is a widely abused amphetamine analog. Few studies have investigated the molecular effects of METH exposure in adult animals. Herein, we determined the consequences of an injection of METH (10 mg/kg) on transcriptional effects of a second METH (2.5 mg/kg) injection given one month later. We thus measured gene expression by microarray analyses in the nucleus accumbens (NAc) of 4 groups of rats euthanized 2 hours after the second injection: saline-pretreated followed by saline-challenged (SS) or METH-challenged (SM); and METH-pretreated followed by saline-challenged (MS) or METH-challenged (MM). Microarray analyses revealed that METH (2.5 mg/kg) produced acute changes (1.8-fold; <i>P</i><0.01) in the expression of 412 (352 upregulated, 60 down-regulated) transcripts including cocaine and amphetamine regulated transcript, corticotropin-releasing hormone (<i>Crh</i>), oxytocin (<i>Oxt</i>), and vasopressin (<i>Avp</i>) that were upregulated. Injection of METH (10 mg/kg) altered the expression of 503 (338 upregulated, 165 down-regulated) transcripts measured one month later (MS group). These genes also included <i>Cart</i> and <i>Crh</i>. The MM group showed altered expression of 766 (565 upregulated, 201 down-regulated) transcripts including <i>Avp</i>, <i>Cart</i>, and <i>Crh</i>. The METH-induced increased <i>Crh</i> expression was enhanced in the MM group in comparison to SM and MS groups. Quantitative PCR confirmed the METH-induced changes in mRNA levels. Therefore, a single injection of METH produced long-lasting changes in gene expression in the rodent NAc. The long-term increases in <i>Crh</i>, <i>Cart</i>, and <i>Avp</i> mRNA expression suggest that METH exposure produced prolonged activation of the endogenous stress system. The METH-induced changes in oxytocin expression also suggest the possibility that this neuropeptide might play a significant role in the neuroplastic and affiliative effects of this drug.</p></div

    An acute METH injection induces changes in a network of genes that participate in cell and CRF signaling.

    No full text
    <p>The networks of related genes were generated through the use of IPA (Ingenuity® Systems, <a href="http://www.ingenuity.com" target="_blank">www.ingenuity.com</a>). This figure shows that the relationship of several neuropeptides including Avp, Crh (Crf), and Sst that were significantly induced after the acute METH (2.5 mg/kg) injection. The genes were a subset of genes from the SMvSS comparison shown in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0084665#pone-0084665-g001" target="_blank">figure 1</a>. Relationships are shown as lines and arrows. The genes colored red to pink are up-regulated whereas those colored deep to light green are down-regulated. The intensity of the color represents is proportional to fold changes. The indirect relations between the genes were shown in dotted arrows and direct interaction in solid arrows. Arrows are colored differently to ease the identification of each connection. The various shapes within the figure represent the functional classes of the specific gene products (see legend in the top left).</p

    Partial list of METH-upregulated genes in comparison to SS group.

    No full text
    <p>The animals were treated and microarray analyses were performed as described in the text. The number listed in bold under the representative columns (SMvSS, MSvSS, MMvSS) identify genes whose mRNA were significantly increased according to the following criteria: greater than +1.8-fold, p<0.01. In some cases, values that are greater than 1.8-fold are not in bold because they did not reach the p value cut-off for the microarray analysis.</p

    Partial list of METH down-regulated genes in comparison to SS group.

    No full text
    <p>The animals were treated and microarray analyses were performed as described in the text. The number listed in bold under the representative columns (SMvSS, MSvSS, MMvSS) identify genes whose mRNA were significantly increased according to the following criteria: lesser than −1.8-fold, p<0.01. In some cases, values that are greater than −1.8-fold are not in bold because they did not reach the p value cut-off for the microarray analysis.</p
    corecore