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� Methamphetamine (METH) is a toxic drug of abuse, which can cause significant
decreases in the levels of monoamines in various brain regions. However, animals treated
with progressively increasing doses of METH over several weeks are protected against the
toxic effects of the drug. In the present study, we tested the possibility that this pattern of
METH injections might be associated with transcriptional changes in the rat striatum, an
area of the brain which is known to be very sensitive to METH toxicity and which is pro-
tected by METH preconditioning. We found that the presence and absence of precondi-
tioning followed by injection of large doses of METH caused differential expression in dif-
ferent sets of striatal genes. Quantitative PCR confirmed METH-induced changes in some
genes of interest. These include small heat shock 27 kD proteins 1 and 2 (HspB1 and
HspB2), brain derived neurotrophic factor (BDNF), and heme oxygenase-1 (Hmox-1).
Our observations are consistent with previous studies which have reported that ischemic
or pharmacological preconditioning can cause reprogramming of gene expression after
lethal ischemic insults. These studies add to the growing literature on the effects of pre-
conditioning on the brain transcriptome.

Keywords: methamphetamine, preconditioning, striatum, BDNF, heat shock proteins

INTRODUCTION

Methamphetamine (METH) is an illicit drug which has become an
international public health problem. Specifically, METH abuse is associ-
ated with many negative consequences which include altered behavioral
and cognitive functions (Murray 1998; Scott et al. 2007; Darke et al. 2008).

Address correspondence to Jean Lud Cadet, M.D., Molecular Neuropsychiatry Research
Branch, National Institute on Drug Abuse/NIH/DHHS, 251 Bayview Boulevard, Baltimore,
MD 21224; Tel: 443-740-2656; Fax: 443-740-2856; E-mail: jcadet@intra.nida.nih.gov
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Withdrawal from METH causes anhedonia and intense craving for the
drug (Zweben et al. 2004; Sekine et al. 2006; Darke et al. 2008). The 
negative neuropsychiatric consequences of METH abuse are thought to
be due to drug-induced neurodegenerative effects in METH addicts
(Scott et al. 2007). Patterns of METH abuse are multiple but usually
involve the intake of small doses of the drug followed by gradual increas-
es to larger doses of the psychostimulant (Kramer et al. 1967).
Neuropsychological tests have revealed that METH addicts who abuse
these large doses suffer from cognitive deficits (Simon et al. 2002; Sekine
et al. 2003) and structural abnormalities in their brains (Chang et al. 2007;
Sekine et al. 2008). METH-dependent patients indeed suffer from
decreases in dopamine (DA) (Volkow et al. 2001) and of serotonin (5-HT)
transporters (Sekine et al. 2006).

Many of these neuropathological changes have been replicated in
animal models (Krasnova and Cadet 2009). Specifically, METH can cause
decreases in DA, 5-HT, and DA transporters (DAT) in various brain
regions (Cadet et al. 1994; Deng et al. 1999; Ladenheim et al. 2000;
Thomas and Kuhn 2005; Cadet et al. 2007). These experiments focused
on the use of moderate to large doses of METH injected during single-
day binges (Cadet et al. 2003). However, several groups have now experi-
mented with administration of increasing METH doses over several days
prior to challenging the animals with toxic doses of the drug and have
found that these patterns of drug administration can provide protection
against METH toxicity (Johnson-Davis et al. 2003; Danaceau et al. 2007;
Graham et al. 2008; Cadet et al. 2009a). Cadet and colleagues (2009a)
have recently suggested that this pattern of drug administration is com-
parable with other models of brain preconditioning (Calabrese 2008;
Obrenovitch 2008) and might involve similar molecular mechanisms of
protection (Cadet and Krasnova 2009). For example, it has been report-
ed that brain preconditioning by various manipulations is associated with
differential gene expression in the presence of ischemic injuries (Dirnagl
et al. 2003; Stenzel-Poore et al. 2003; Dhodda et al. 2004; Koerner et al.
2007; Stenzel-Poore et al. 2007). We thus conducted the present study to
test if the absence and presence of METH preconditioning might be also
associated with METH-induced differential gene expression in the stria-
tum, a brain region which is known to be affected by METH (Krasnova
and Cadet 2009).

MATERIALS AND METHODS

Animals.

Male Sprague-Dawley rats (Charles Rivers Laboratories, Raleigh, NC),
weighing 330-370 g in the beginning of the experiment were used in the
present study. Animals were housed in a humidity- and temperature-con-
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trolled room and were given free access to food and water. All animal pro-
cedures were performed according to the National Institutes of Health
Guide for the Care and Use of Laboratory Animals and were approved by the
local Animal Care Committee.

Drug Treatment and Tissue Collection.

Following habituation, rats were injected intraperitoneally with either
(±)-METH-hydrochloride (NIDA, Baltimore, MD) or an equivalent vol-
ume of 0.9% saline for a period of three weeks as described elsewhere
(Graham et al. 2008; Cadet et al. 2009a). The saline- or METH-pretreated
animals received either saline or METH (5 mg/kg x 8 at 1 h intervals)
challenges 72 hours after the preconditioning period. This dose of
METH is known to cause significant decreases in the levels of
monoamines in the rat striatum (Krasnova and Cadet 2009). The four
groups of animals were: saline/saline (SS), saline/METH (SM), METH
preconditioning/saline (MS), and METH preconditioning/METH
(MM). The animals were euthanized 24 h after the injection of the last
dose of METH. Their brains were quickly removed, brain regions were
dissected on ice, snap frozen on dry ice, and stored at -80°C until used in
microarray analyses or quantitative PCR experiments as described below.

RNA Extraction and Microarray Hybridization.

Total RNA was isolated using Qiagen RNeasy Midi kit (Qiagen,
Valencia, CA) according to the manufacturer’s instructions. RNA integri-
ty was assessed using an Agilent 2100 Bioanalyzer (Agilent, Palo Alto, CA)
and showed no degradation. Microarray hybridization was carried out
using Illumina’s RatRef-12 Expression BeadChips arrays (22, 227 probes)
(Illumina Inc., San Diego, CA). In brief, a 600 ng aliquot of total RNA
from each striatal sample was amplified using Ambion’s Illumina RNA
Amplification kit (Ambion, Austin, TX). Single-stranded RNA (cRNA)
was generated and labeled by incorporating biotin-16-UTP (Roche
Diagnostics Corporation, Indianapolis, IN). 750 ng of each cRNA sample
were hybridized to Illumina arrays at 55 oC overnight according to the
Illumina Whole-Genome Gene Expression Protocol for BeadStation
(Illumina Inc.). Hybridized biotinylated cRNA was detected with cya-
nine3-streptavidine (GE Healthcare, Piscataway, NJ) and quantified using
Illumina’s BeadStation 500GX Genetic Analysis Systems scanner.

Microarray Data Analysis.

The raw data for the analyses of the four groups of animals are avail-
able upon request. The Illumina BeadStudio software was used to meas-
ure fluorescent hybridization signals. Data were extracted by BeadStudio
(Illumina Inc.) and then analyzed using GeneSpring software v. 7.3.1

METH preconditioning and gene expression in the striatum
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(Silicon Genetics, Redwood City, CA). Raw data were imported into
GeneSpring and normalized using global normalization. The normalized
data were used to identify changes in gene expression in four group com-
parisons: MS vs SS, SM vs SS, MM vs SS, and MM vs MS. A gene was iden-
tified as significantly changed if it showed increased or decreased expres-
sion according to an arbitrary cut-off of 1.7-fold changes at p < 0.025.

Real-time PCR.

Total RNA extracted from the rat striatum was also used to confirm
the expression of genes of interest by real-time RT-PCR as previously
described (Krasnova et al. 2007; Krasnova et al. 2008). In brief, unpooled
total RNA obtained from 5-7 rats per group was reverse-transcribed with
oligo dT primers and Advantage RT for PCR kit (Clontech, Mountain
View, CA). PCR experiments were performed using light cycler technol-
ogy and LightCycler FastStart DNA Master SYBR Green I kit (Roche)
according to manufacturer’s protocol. Sequences for gene-specific
primers corresponding to PCR targets were obtained using LightCycler
Probe Design software (Roche). The primers were synthesized and
HPLC-purified at the Synthesis and Sequencing Facility of Johns Hopkins
University (Baltimore, MD). Quantitative PCR values were normalized
using 18S rRNA and quantified. The results are reported as relative
changes which were calculated as the ratios of normalized gene expres-
sion data of each group compared to the SS group.

Statistical Analysis.

Statistical analysis was performed using analysis of variance (ANOVA)
followed by Fisher’s protected least significant difference post-hoc com-
parison (StatView 4.02, SAS Institute, Cary, NC). Values are shown as
means ± SEM. The null hypothesis was rejected at p < 0.05.

RESULTS

Identification of genes regulated by METH preconditioning and by METH
challenges in the rat striatum.

As reported elsewhere, METH preconditioning caused protection
against METH-induced depletion in striatal DA and 5-HT levels (Cadet et
al. 2009a). In order to assess transcriptional effects of toxic doses of
METH in the rat striatum, we used Illumina RatRef-12 Expression
BeadChips arrays that contain 22, 523 probes. The results of 3 compar-
isons between the four groups of rats: MS vs SS, SM vs SS, and MM vs MS
are presented in the Venn diagram (Fig. 1). To be identified as changed,
the genes had to show 1.7-fold difference with control expression at 
p < 0.025. A total of 230 genes were differentially impacted in the three
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comparisons, the distribution and overlap of these genes are shown in
Fig. 1. Partial lists of these genes are given in tables 1-4.

Effects of METH preconditioning on striatal gene expression.
Table 1 shows that chronic administration of low non-toxic doses of

METH caused significant changes in the expression of 42 genes, with 30
being up-regulated and 12 down-regulated (MS vs SS). Of these genes,
there were 34 that were found only in the MS vs SS comparison while 3
were found co-localized within the SM vs SS and 5 genes within the MM
vs MS comparison. The most up-regulated gene was the predicted gene,
Cd97, which showed 27-fold increases. (We are using only abbreviations
in the text since the full name of the genes can be found in the tables that
provide the list of METH-regulated genes). METH preconditioning
caused 18-fold increases in the expression of Gabrr2 which is a receptor
in GABA-mediated inhibitory synapses in the brain (Schmidt 2008).
Another gene of interest is Fgf3, a member of the Fgf family of trophic
factors (Itoh and Ornitz, 2008), which shows about 12-fold increases after
repeated injections of non-toxic doses of METH.

Effects of METH challenges on striatal gene expression in the absence of
METH preconditioning.

Table 2 shows partial lists of genes affected by binge METH challenge
in the striatum in the absence of METH preconditioning (SM vs SS).

METH preconditioning and gene expression in the striatum
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FIGURE 1. METH preconditioning induces differential striatal transcriptional responses to large
doses METH. The Venn diagram shows the overlap of genes identified by the three sets of compar-
isons. The animals were injected and euthanized as described in the text. RNA was extracted from rat
striatal tissues. The microarray experiments were performed as described in the method section.
Genes were identified as significantly changed if they show greater than ±1.7-fold changes at p < 0.025. 
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TABLE 2. METH-induced increases in striatal gene expression in the absence of METH 
preconditioning. 

Fold Changes
SM/SS Gene Symbol Common Description

44.60 Hcst Hcst hematopoietic cell signal transducer
21.13 Il1a IL-1 alpha interleukin 1 alpha
15.80 Lfng Lfng lunatic fringe gene homolog (Drosophila)
14.83 H19 H19 Rattus norvegicus H19 fetal liver mRNA (H19), 

misc RNA.
12.53 Bcl2l10 Bcl2l10 Bcl2-like 10
11.22 Mb Mb myoglobin
10.88 Timp1 Timp; TIMP-1 tissue inhibitor of metallopeptidase 1
8.19 Hspb1 Hsp25; Hsp27 heat shock 27kDa protein 1
4.83 Cd44 CD44A; METAA; CD44 antigen

RHAMM
4.45 Lcn2 Lcn2 lipocalin 2
4.41 S100a3 S100a3 S100 calcium binding protein A3
3.05 Fmo2 Fmo2 flavin containing monooxygenase 2
2.82 Gfap Gfap Rattus norvegicus glial fibrillary acidic protein 

(Gfap), mRNA.
2.74 Pdpn E11; Gp38; OTS-8; podoplanin

RTI40; T1-alpha
2.67 Emp3 epithelial membrane protein 3
2.64 Serping1 serine (or cysteine) peptidase inhibitor, 

clade G, member 1
2.53 Parp3 Adprtl3 poly (ADP-ribose) polymerase family, member 3
2.50 Cd14 Cd14 CD14 antigen
2.34 Chi3l1 Chi3l1 chitinase 3-like 1
2.32 Tyrobp Karap Tyro protein tyrosine kinase binding protein

Continued

TABLE 1. Effects of METH preconditioning alone on striatal gene expression. 

Fold Changes
MS/SS Gene Symbol Common Description

18.32 Adam18 tMDCIII a disintegrin and metallopeptidase domain 18
18.18 Gabrr2 Gabrr2 gamma-aminobutyric acid (GABA-C) receptor, 

subunit rho 2
13.91 Sftpb Sp-b surfactant associated protein B
11.89 Fgf3 Int2 fibroblast growth factor 3
8.73 Grpca Grpca glutamine/glutamic acid-rich protein A
1.89 Fmo2 Fmo2 flavin containing monooxygenase 2
1.75 E2f1 E2f1 E2F transcription factor 1
–1.71 Lox Rattus norvegicus lysyl oxidase (Lox), mRNA.
–2.92 Foxi2 Fkhl5; Foxf1 forkhead box I2
–16.23 Pcdhac1 Pcdhac1; rCNRvc1 protocadherin alpha subfamily C, 1

Data were obtained from the MS vs SS comparison. Predicted genes are not listed. The genes are
listed in descending order according to METH-induced fold changes in gene expression.
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METH challenge caused significant changes in a total of 98 genes. Of
these, 79 were up-regulated (Table 2) and 19 were down-regulated (not
shown). The most significantly changed gene was Hcst which showed
about a 45-fold increase. Other up-regulated genes of interest include
Bcl2-like 10, Hsp27/HspB1, GFAP, Hmox-1, and caspase 4. GFAP expres-

METH preconditioning and gene expression in the striatum
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TABLE 2. Continued. 

Fold Changes
SM/SS Gene Symbol Common Description

2.28 Gpd1 GPDH; Gpd3 glycerol-3-phosphate dehydrogenase 1 (soluble)
2.25 Tmbim1 transmembrane BAX inhibitor motif containing 1
2.20 Nes Nes nestin
2.17 Cox6a2 COX6B; COX6AH cytochrome c oxidase, subunit VIa, polypeptide 2
2.16 Prelp Prelp proline arginine-rich end leucine-rich 

repeat protein
2.13 Plp2 A4-LSB proteolipid protein 2
2.12 C1qb C1qb complement component 1, q subcomponent, 

beta polypeptide
2.02 Ptpn6 Ptph6; Shp-1 protein tyrosine phosphatase, non-receptor type 6
1.96 Sv2c Sv2c synaptic vesicle glycoprotein 2c
1.95 Prkcdbp Srbc; DIG-2 protein kinase C, delta binding protein
1.95 Vamp5 Vamp5 vesicle-associated membrane protein 5
1.95 S100a4 CAPL; MTS1 S100 calcium-binding protein A4
1.93 Fxyd5 RIC FXYD domain-containing ion transport 

regulator 5
1.92 Ddit4l Ddit4l DNA-damage-inducible transcript 4-like 

(Ddit4l), mRNA.
1.92 Col5a1 Col5a1 procollagen, type V, alpha 1
1.90 Fgfrl1 Fgfr5 fibroblast growth factor receptor-like 1
1.90 Arf6 Arf6 ADP-ribosylation factor 6
1.89 Hla-dma RT1-DMa; RT1.DMa major histocompatibility complex, class II, 

DM alpha
1.89 Pycard Asc PYD and CARD domain containing
1.85 Cdo1 Cdo1 cysteine dioxygenase 1, cytosolic
1.84 Clic1 Clic1 chloride intracellular channel 1
1.82 Ccl21b chemokine (C-C motif) ligand 21b (serine)
1.81 Stat3 signal transducer and activator of transcription 3
1.80 Hmox1 Ho1; Heox; Hmox; Ho-1; heme oxygenase 

HEOXG; hsp32 (decycling) 1
1.79 Chek2 Chk2; Rad53 CHK2 checkpoint homolog (S. pombe)
1.79 Casp4 Casp11 caspase 4, apoptosis-related cysteine peptidase
1.76 Eif4ebp1 PHAS-I eukaryotic translation initiation factor 4E 

binding protein 1
1.74 Tgfb1 Tgfb1 transforming growth factor, beta 1
1.73 Lgals3 gal-3 lectin, galactose binding, soluble 3
1.71 ZnT3 Slc30a3 solute carrier family 30 (zinc transporter), 

member 3
1.70 Emp1 TMP; CL-20; EMP-1; epithelial membrane protein 1

ENP1MR

The data were generated from the SM vs SS comparison. Predicted genes are not included. The
genes are listed in descending order according to fold changes in gene expression.
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sion has been shown to be induced by toxic doses of METH (Deng et al.
1999; Krasnova et al. 2010). The members of the Bcl2 family of mito-
chondrial proteins are also influenced by toxic doses of the drug
(Jayanthi et al. 2001) and are involved in METH-induced neuronal apop-
tosis (Cadet et al. 1997). The expression of Hsp27/HspB1 (Jayanthi et al.
2009) and of Hmox-1 (Cadet et al. 2009b; Jayanthi et al. 2009) is also
changed by toxic doses of METH. Some of these genes are similar to
those reported by another group (Thomas et al., 2004).

Effects of METH challenges on striatal gene expression in the presence of
METH preconditioning.

Table 3 shows a partial list of genes whose expression was affected by
the injections of large doses of METH in the presence of METH precon-
ditioning (MM vs MS). Ninety genes were affected in that comparison. Of
these, 32 were up-regulated and 58 were down-regulated by the large dose
METH challenge. Sixty seven of these genes were changed only after
METH challenge in the striata of rats preconditioned with METH while
18 genes were also contained in the MM vs MS comparison (Fig. 1). In
addition, 5 genes showed changes in expression in the MS vs SS compar-
ison. The most up-regulated gene was H19. Other up-regulated genes of
interest include Timp1, Nes, GFAP, and Vgf. HspB1 which was up-regu-
lated in the absence of METH preconditioning is also up-regulated in the
MM vs MS comparison, but to a lesser extent. In contrast, S100a3 and
GFAP were up-regulated to similar extent in the absence or presence of
METH preconditioning.

Differential METH-induced striatal gene expression in the absence and pres-
ence of METH preconditioning.

In order to dissect the effects of METH preconditioning further, we
compared the levels of gene expression between the MM and the SM
groups (MM vs SM). We found that 77 genes were affected, with 36 being
up-regulated and 41 down-regulated. Table 4 shows a partial list of these
genes. The most up-regulated gene was Igsf7. Other up-regulated genes
of interest include Lif and Egfl6. Down-regulated genes of interest
include BDNF and Nurr1.

Quantitative PCR for genes of interest

We examined METH-induced changes in the expression of
Hsp27/HspB1 which was up-regulated to differential degrees in both the
SM and MM groups in the microarray experiments. METH injections
caused about 22- and 7-fold increases in the levels of Hsp27/HspB1
mRNA in the SM and MM groups, respectively (Fig. 2A). The changes
observed in the MM were significantly less pronounced than those
observed in the SM group. We also measured the expression of HspB2,
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TABLE 3. METH-induced changes in striatal gene expression in the presence of METH 
preconditioning. 

Fold Changes
(MM/MS) Gene Symbol Common Description

13.43 H19 Rattus norvegicus H19 fetal liver mRNA (H19), 
misc RNA.

11.12 Gys2 GLYSN glycogen synthase 2
5.67 Timp1 Timp; TIMP-1 tissue inhibitor of metallopeptidase 1
4.47 Hspb1 Hsp25; Hsp27 heat shock 27kDa protein 1
3.50 Cd44 CD44A; METAA CD44 antigen
3.30 S100a3 S100a3 S100 calcium binding protein A3
2.95 Cxcl10 IP-10; Scyb10 chemokine (C-X-C motif) ligand 10
2.20 Nes Nes nestin
2.19 Gfap Gfap Rattus norvegicus glial fibrillary acidic protein 

(Gfap), mRNA.
2.18 Pdpn E11; Gp38; OTS-8 podoplanin
1.94 Chi3l1 Chi3l1 chitinase 3-like 1
1.83 Tmbim1 transmembrane BAX inhibitor motif containing 1
1.82 Tyrobp Karap Tyro protein tyrosine kinase binding protein
1.81 Vgf Vgf VGF nerve growth factor inducible
1.81 Serping1 serine (or cysteine) peptidase inhibitor, 

clade G, member 1
1.76 Prelp Prelp proline arginine-rich end leucine-rich 

repeat protein
-1.72 Slc4a1 solute carrier family 4, member 1
-1.75 Gucy1b2 SGC; Gucy1b2a; guanylate cyclase 1, soluble, beta 2

Gucy1b2b
-1.75 Grem1 drm; Cktsf1b1 gremlin 1 homolog, cysteine knot superfamily 

(Xenopus laevis)
-1.79 Ces2 rCES2; CES RL4 carboxylesterase 2 (intestine, liver)
-1.81 Hcn1 Hcn1 hyperpolarization-activated cyclic nucleotide-

gated potassium channel 1
-1.86 Sstr1 Rattus norvegicus somatostatin receptor 1 

(Sstr1), mRNA.
-1.87 Ahr Rattus norvegicus aryl hydrocarbon receptor 

(Ahr), mRNA.
-1.94 Rnasel Rnasel ribonuclease L (2’,5’-oligoisoadenylate 

synthetase-dependent)
-1.95 Pnck Camk1b pregnancy upregulated non-ubiquitously 

expressed CaM kinase
-2.13 Slit1 Rattus norvegicus slit homolog 1 (Drosophila) 

(Slit1), mRNA.
-3.37 Rtn4r Rattus norvegicus reticulon 4 receptor 

(Rtn4r), mRNA.
-4.18 St8sia6 Siat8f ST8 alpha-N-acetyl-neuraminide 

alpha-2,8-sialyltransferase 6
-14.21 Arl10 Arl10 ADP-ribosylation factor-like 10
-15.94 Nfatc2ip nuclear factor of activated T-cells, cytoplasmic, 

calcineurin-dependent 2 interacting protein
-20.45 Dnase1l3 deoxyribonuclease I-like 3
-27.30 Cldn3 Cldn3 claudin 3
-30.18 Ntn2l Ntn3 netrin 2-like (chicken)
-42.53 Pla2g1b Pla2g1b phospholipase A2, group IB
-44.28 Col23a1 Col23a1 procollagen, type XXIII, alpha 1

The data were generated from the MM vs MS comparison. Predicted genes are not included. The
genes are listed in descending order according to fold changes in gene expression.
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another member of the HspB family of small heat shock proteins (sHSPs)
(Hu et al. 2008) which has been shown to exert protection against
ischemia-induced damage (Morrison et al. 2004). The METH injections
caused significant increases in HspB2 mRNA levels in the absence but not
in the presence of METH preconditioning (Fig. 2B).

The PCR experiments also confirmed that the expression of Hmox-1
was up-regulated in the SM but not in the MM group (Fig. 3A). In addi-
tion, we also measured the expression of Hmox-2, another member of the
Hmox family even though it was not identified as being regulated by
METH in the microarray data. As shown in Fig. 3B, there were small
decreases in the MM group which were significantly different from the
SM group. Because Hmox-1 expression is regulated by NRF2 protein
translocation from the cytosol to the nucleus (Surh et al. 2009), we tested
the idea that multiple injections of METH might cause increases in Nrf2
mRNA. We found that the METH challenge did cause increases in Nrf2
expression in the absence (SM) but not in the presence of METH pre-
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TABLE 4. Differential METH-induced striatal gene expression in the absence and presence of
METH preconditioning. 

Fold Changes
(MM/SM) Gene Symbol Common Description

23.64 Igsf7 Igsf7; Mair-II immunoglobulin superfamily, member 7
15.17 Lif Lif leukemia inhibitory factor
10.55 Nanog Nanog Nanog homeobox
7.40 Fut11 fucosyltransferase 11
7.38 Kcnq2 Kcnq2 potassium voltage-gated channel, subfamily Q, 

member 2
1.88 Chrna7 BTX cholinergic receptor, nicotinic, 

alpha polypeptide 7
1.74 Egfl6 Egfl6 EGF-like-domain, multiple 6
-1.72 Lxn latexin
-1.75 Bdnf brain derived neurotrophic factor
-1.76 Hgfac Hgfac hepatocyte growth factor activator
-1.79 Abcb1b Mdr1; Pgy1; Abcb1 ATP-binding cassette, sub-family B (MDR/TAP), 

member 1B
-1.86 Hcn1 Hcn1 hyperpolarization-activated cyclic nucleotide-

gated potassium channel 1
-2.02 Nr4a2 Nurr1 nuclear receptor subfamily 4, group A, member 2
-2.07 Hs3st2 Hs3st2 heparan sulfate (glucosamine) 

3-O-sulfotransferase 2
-2.61 Klk8 bsp1 kallikrein 8 (neuropsin/ovasin)
-2.65 Nov Nov nephroblastoma overexpressed gene
-2.77 Cnga1 HCN; Cncg cyclic nucleotide gated channel alpha 1
-11.10 Npm2 Npm2 nucleophosmin/nucleoplasmin 2
-20.75 Neurod1 Neurod1 neurogenic differentiation 1

Data were obtained from the MM vs SM comparison. Predicted genes are not listed. The genes
are listed in descending order according to the METH-induced fold changes.
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FIGURE 2. Quantitative PCR validates the effects of large doses of METH on striatal HspB1 and
HspB2 mRNA levels. Data were obtained using RNA isolated from 5-6 animals per group and meas-
ured individually. The mRNA levels were normalized to 18S rRNA levels. The values are shown as
means ± SEM in comparison to the SS group. METH caused substantial increases in (A) HspB1 in
both the SM and MM groups and (B) HspB2 only in the SM group. Keys to statistics: *, **, *** p <
0.05, 0.01, 0.001, respectively, in comparison to the SS group; #, ### p < 0.05, 0.001, respectively, in
comparison to the MS group; !!!, p < 0.001, in comparison to the SM group. 

FIGURE 3. Effects of large doses of METH on striatal Hmox-1, Hmox-2, Nrf2, and DnaJc3 mRNA lev-
els. Data were obtained using RNA isolated from 5-6 animals per group and measured individually.
The mRNA levels were normalized to 18S rRNA levels. The values are means ± SEM in comparison
to the SS group. METH caused substantial increases in (A) Hmox-1 in the SM group but not in (B)
Hmox-2. There were also METH-induced increases in the expression of (C) Nrf2 in the SM group
and of (D) DnaJc3 in both the SM and MM groups. Keys to statistics: *, **, *** p < 0.05, 0.01, 0.001,
respectively, in comparison to the SS group; #, ### p < 0.05, 0.001, respectively, in comparison to the
MS group; !!, !!!, p < 0.001, respectively, in comparison to the SM group. 
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conditioning (MM) (Fig. 3C). Because Hmox-1 is up-regulated by endo-
plasmic reticulum (ER) stress (Gozzelino et al. 2010), we also tested the
possibility that DnaJc3 (p58IPK) which is involved in protecting cells
against ER stress (Rutkowski et al. 2007) might be induced by METH.
Indeed, the large METH doses caused significant increases in DnaJc3
expression in the absence but not in the presence of METH precondi-
tioning (Fig. 3D).

Because the microarray experiments identified BDNF as being down-
regulated in the MM in comparison to the SM group and because BDNF
has been shown to provide protection against transneuronal degenera-
tion of DA neurons (Canudas et al. 2005), we sought to confirm these
data by quantitative PCR. Figure 4A shows that there were significant
decreases in BDNF expression in the presence of METH preconditioning
(MM group). We also measured the expression of GDNF that has been
shown to protect against METH toxicity (Cass et al. 2006). There were
some decreases in GDNF mRNA levels in MM group that did not reach
statistical significance (Fig. 4B).

DISCUSSION

The main findings in these experiments are that acute injections of
large doses of METH caused differential gene expression in the striata of
rats depending on whether the animals have been pre-exposed repeated-
ly to smaller non-toxic doses of the drug or not. The present observations
allowed for the creation of differentially expressed genes after exposure
to large doses of METH. These results are important because there are
very few reports on the effects of chronic METH treatment on large scale
gene expression in the rat striatum. We hope that the results of our study
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FIGURE 4. Effects of large doses of METH on striatal BDNF and GDNF mRNA levels. Tissues were
processed and mRNA levels measured as described in the text. METH caused significant decreases in
(A) BDNF in MM group. (B) GDNF expression was not significantly affected in any of the groups.
Keys to statistics: * p < 0.05, in comparison to the SS group. 
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will provide a comprehensive database for future investigations of METH
preconditioning, METH toxicity, and drug-induced neuroplastic changes
in the rat striatum.

In this study, we found that the vast majority of genes regulated by the
single-day binge METH injections are different from those regulated by
acute METH injections (Cadet et al. 2001; Jayanthi et al. 2009). These dif-
ferences might be due to the fact that data reported in the previous stud-
ies were obtained from animals euthanized within the first 4 hours after
the METH injections (Cadet et al. 2001; Jayanthi et al. 2009). It is impor-
tant to point out that the genes identified in the striatum are also differ-
ent from the genes identified in the midbrain after METH precondition-
ing, indicating that the preconditioning process might be regionally spe-
cific in terms of METH-induced gene expression (Cadet et al. 2009b).
These regional differences might be secondary to the fact that the data of
the former study came from the rat midbrain which is the site of origin
for dopaminergic neurons whereas the present data were obtained from
intrinsic striatal non-dopaminergic neurons. Nevertheless, our data sup-
port the idea that METH preconditioning is associated with significant
alterations of the striatal transcriptional responses to large doses of
METH. In what follows, we discuss the role of some interesting genes
whose METH-induced changes in expression were confirmed by quanti-
tative PCR.

Mammalian HSPs, which include Hsp27/HspB1, are molecular chap-
erones that participate in the proper folding of proteins and help to
maintain their native conformations during stressful events (Arya et al.
2007). Hsp27/HspB1 is a novel regulator of intracellular redox state
(Arrigo 2007). HSPs also participate in the transfer of improperly folded
proteins to the proteasome for degradation. HSPs are induced by heat
shock, hypoxic and ischemic events, and oxidative stress (Arrigo 2007;
Arya et al. 2007). Recent studies have documented a role for these pro-
teins in neurodegenerative processes and have demonstrated that HSPs
are important in cellular protection against aggregation-prone proteins
and in animal models of neurodegeneration (Muchowski and Wacker
2005). Thus, our demonstration of METH-induced expression of the
chaperones, Hsp27/HspB1 (Franklin et al. 2005) and HspB2 (Hu et al.
2008), suggests that striatal cells are able to mount adaptive defensive
HSP-modulated networks against the toxic effects of the drug.
Hsp27/HspB1 appears to exert its protective effects, in part, by inhibiting
caspase-dependent apoptotic pathways (Garrido et al. 1999; Voss et al.
2007).

We also found that the METH challenge caused 3-fold increases in
Hmox-1 expression in the absence of METH preconditioning and that
these increases were attenuated in the striata of the METH precondi-
tioned rats. Because Hmox-1 is an enzyme that can be induced by oxida-
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tive stress (Calabrese et al. 2004; Li et al. 2007) and because METH toxici-
ty is mediated, in part, via oxidative stress (Krasnova and Cadet 2009), the
present observations suggest that the METH challenge might have caused
more oxidative stress in the striata of animals pretreated with saline.
However, since saline-pretreated animals do show METH toxicity, these
METH-induced increases in Hmox-1 might not be sufficient to protect
post-synaptic cells from drug-related damage. It is important to point that
overexpression of Hmox-1 can protect against METH toxicity in vitro
(Huang et al. 2009). Nevertheless, it appears that a substantial increase in
the level of the enzyme might be necessary before protection against
METH toxicity can be observed in vivo. This remains to be demonstrated.

The expression of BDNF which is involved in the regulation of cell
survival (Canudas et al. 2005) and in synaptic plasticity (Kuipers and
Bramham 2006), was significantly decreased by the METH challenge only
in the presence of METH preconditioning. These results were unexpect-
ed since we had observed increases in BDNF expression in the midbrain
where the DA neurons are located (Cadet et al. 2009b). The present
observations in the rat striatum suggest that the increases in BDNF in
midbrain dopaminergic neurons might cause increases in the release of
BDNF in the striatum and compensatory down-regulation of its expres-
sion in intrinsic striatal cells via epigenetic changes in the regulation of
BDNF through promoter methylation (Dennis and Levitt 2005). These
epigenetic changes might also involve decreased recruitment of acetylat-
ed histones on BDNF promoters since histone deacetylase (HDAC)
inhibitors have been reported to cause increases in BDNF transcription
(Wu et al. 2008). In any case, these dichotomous results in the terminal
regions and in the cell body area emphasize the need to determine
regional effects of toxic agents on the brain.

This discussion also applies to the effects of METH on striatal Hspb2
and Hmox1 mRNA levels which showed increases in response to the chal-
lenge with high doses of METH in the absence but not in the presence of
METH preconditioning. The situation was reversed in the midbrain of
these animals because METH preconditioning enhanced the METH chal-
lenge-induced increases in Hspb2 and Hmox-1 mRNA levels in the rat
midbrain (Cadet et al., 2009b). These results support our thesis that the
brain cannot be thought of as a homogeneous structure when assessing
the molecular effects of preconditioning and/or toxic compounds.

In summary, we found that the challenge with large doses of METH
is associated with differential transcriptional responses in the rat striatum
in the absence and presence of preconditioning with repeated injections
of small nontoxic doses of the drug. These results suggest that intrinsic
striatal cells exposed to low METH doses develop a certain degree of tol-
erance to the effects of the drug on the expression of genes that are trig-
gering the nefarious METH effects. Future studies are underway to test
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the possibility that METH preconditioning can also protect against
METH-induced cell death in the striatum.
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