
Transcriptional and Epigenetic Substrates of Methamphetamine
Addiction and Withdrawal: Evidence from a Long-Access
Self-Administration Model in the Rat

Jean Lud Cadet & Christie Brannock &

Subramaniam Jayanthi & Irina N. Krasnova

Received: 6 March 2014 /Accepted: 1 June 2014 /Published online: 18 June 2014
# The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract Methamphetamine use disorder is a chronic neuro-
psychiatric disorder characterized by recurrent binge episodes,
intervals of abstinence, and relapses to drug use. Humans
addicted to methamphetamine experience various degrees of
cognitive deficits and other neurological abnormalities that
complicate their activities of daily living and their participa-
tion in treatment programs. Importantly, models of metham-
phetamine addiction in rodents have shown that animals will
readily learn to give themselves methamphetamine. Rats also
accelerate their intake over time. Microarray studies have also
shown that methamphetamine taking is associated with major
transcriptional changes in the striatummeasured within a short
or longer time after cessation of drug taking. After a 2-h
withdrawal time, there was increased expression of genes that
participate in transcription regulation. These included cyclic
AMP response element binding (CREB), ETS domain-
containing protein (ELK1), and members of the FOS family
of transcription factors. Other genes of interest include brain-
derived neurotrophic factor (BDNF), tyrosine kinase receptor,
type 2 (TrkB), and synaptophysin. Methamphetamine-
induced transcription was found to be regulated via phosphor-
ylated CREB-dependent events. After a 30-day withdrawal
from methamphetamine self-administration, however, there
was mostly decreased expression of transcription factors
including junD. There was also downregulation of genes
whose protein products are constituents of chromatin-
remodeling complexes. Altogether, these genome-wide
results show that methamphetamine abuse might be
associated with altered regulation of a diversity of gene
networks that impact cellular and synaptic functions.

These transcriptional changes might serve as triggers
for the neuropsychiatric presentations of humans who
abuse this drug. Better understanding of the way that
gene products interact to cause methamphetamine addic-
tion will help to develop better pharmacological treat-
ment of methamphetamine addicts.
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Abbreviations
AD Alzheimer’s disease
AP1 Activating protein 1
ARID AT-rich interactive domain
ATF Activating transcription factor
BASP1 Brain abundant signal protein/brain

acid soluble protein 1
BDNF Brain-derived neurotrophic factor
CBP CREB-binding protein
CDK Cyclin-dependent kinase
CH Calponin homology
CNS Central nervous systems
CREB Cyclic AMP response element binding
DA Dopamine
DUSPs Dual-specificity phosphatases
Egr1 Early growth factor 1
eIF Eukaryotic translation initiation factor
ELK1 ETS domain-containing protein
ER Endoplasmic reticulum
ERK Extracellular signal-regulated kinases
ETS E-twenty-six domain transcription factor
H3K4me3 Trimethylated lysine 4 of histone 3
HDAC Histone deacetylase
Helios/IKZF2 Ikaros family zinc finger 2

J. L. Cadet (*) : C. Brannock : S. Jayanthi : I. N. Krasnova
Molecular Neuropsychiatry Research Branch, Intramural Research
Program, National Institute on Drug Abuse, NIH, DHHS, 251
Bayview Boulevard, Baltimore, MD 21224, USA
e-mail: JCADET@intra.nida.nih.gov

Mol Neurobiol (2015) 51:696–717
DOI 10.1007/s12035-014-8776-8



IEGs Immediate early genes
JARID1B/
KDM5B

Jumonji AT-rich interactive domain 1B/
lysine-specific demethylase 5B

KCNC2 Potassium voltage-gated channel, Shaw
family

KCNH2 Potassium voltage-gated channel,
subfamily H

KLF10 Kruppel-like zinc finger 10
LRCH4 Leucine-rich repeats domain containing 4
MAPK Mitogen-activated protein kinases
MeCP2 Methyl CpG binding protein 2
NGF Nerve growth factor
Nr4a1 Nuclear receptor subfamily 4, group A,

member 1
PERK Protein kinase RNA-like endoplasmic re-

ticulum kinase
PIP2 Phosphatidylinositol 4 5-bisphosphate
PKA Protein kinase A
PKR RNA-dependent kinase
pRB Retinoblastoma protein
PTKs Protein tyrosine kinases
PTPs Protein tyrosine phosphatases
PTPRE Protein tyrosine phosphatase receptor,

type E
PTPRU Protein tyrosine phosphatase receptor,

type U
R1–R3 Repression domains
TCF Ternary complex factor
TrkB Tyrosine kinase receptor, type 2
WT1 Wilms’ tumor suppressor protein 1

Introduction

Methamphetamine addiction is a major public health problem
that is accompanied by recalcitrant neuropsychiatric and neu-
ropathological complications [1–4]. The neuropsychiatric ad-
verse consequences include subclinical cognitive deficits [5]
that can, nevertheless, negatively impact activities of daily
living [6, 7]. The clinical course of treatment for methamphet-
amine use disorders is also accompanied by variable outcomes
and rates of recidivism [2, 8, 9] that are also thought to depend
on neuroadaptative and/or neuropathological substrates con-
sequent to repeated exposure to the drug [10, 11]. These
adaptive changes appear to include, among others, alterations
in gene and protein expression [11–14], some of which appear
to influence physiological functions at striatal glutamatergic
synapses [15]. It is also likely that the behavioral transition
from occasional use of psychostimulants to drug addiction
may involve a shift of control over drug intake from the
ventral to dorsal striatum when the use of drugs becomes truly
habitual and compulsive [16]. This transition to addictive

behaviors appears to depend, in the case of some drugs, on
transcriptional and epigenetic plastic changes in the brain [17,
18]. Similarly, several studies have reported that methamphet-
amine can significantly influence the expression of many
genes in the nucleus accumbens and dorsal striatum after both
acute and chronic administration of the drug [14, 19–23].
Although these studies have suggested that administration of
methamphetamine might be associated with transcriptional
neuroadaptations, much remains to be done in order to further
dissect the molecular pathobiology of methamphetamine ad-
diction. In our laboratory, we have envisioned methamphet-
amine use disorder as a progressive neuropsychiatric disorder
that results from a diversity of altered gene expression in the
dorsal striatum and other brain regions [10, 11, 15]. In addi-
tion, we and others have proposed that these transcriptional
changes might be dependent on persistent, yet reversible,
epigenetic modifications that drive or inhibit the expression
of specific gene networks that regulate cellular and synaptic
functions and behavioral responses to the drug [11, 12, 15].
Together, the epigenetically determined changes in gene ex-
pression and associated changes in protein levels might then
l e a d t o c ogn i t i v e d e f i c i t s ob s e r v ed i n s ome
methamphetamine-addicted individuals ([10], see Fig. 1).
The present review was thus written to provide a summary
of our more recent work in transcriptional effects of METH
self-administration. The review will also serve to expand on
our previous discussion of methamphetamine-induced tran-
scriptional effects in the brain [11].

Towards that end, we will review recent genome-wide
transcriptional data collected from the dorsal striatum of rats
that had self-administered methamphetamine using a long-
access paradigm [24]. We chose the striatum because it is an
integral part of a circuit that regulates reward and habit
forming [25, 26], both of which are core elements of addiction
[10, 27]. We will also describe several gene networks that are
affected during both early and late withdrawal times after
cessation of methamphetamine self-administration.
Moreover, we will touch on the evidence that methamphet-
amine intake is associated with some epigenetic changes in the
dorsal striatum. These results will be discussed within the
context of the need to generate novel hypotheses to elucidate
the biological substrates of methamphetamine addiction.

Early Transcriptional and Epigenetic Changes
in the Methamphetamine Self-Administration Model

Studies of epigenetic and transcriptional changes associated
with drug addiction have focused mostly on the effects of
cocaine on gene expression and/or histone modifications in
various brain regions [28, 29]. The epigenetic and transcrip-
tional effects of cocaine have been reviewed at great length
[17, 18]. However, very few studies have been conducted on
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the transcriptional and/or epigenetic effects of methamphet-
amine self-administration. Authors focusing on methamphet-
amine self-administration have reported on the effects of these
behavioral manipulations on dopaminergic [24, 30, 31] and
glutamatergic [32] systems as well as c-FOS [13] and brain-
derived neurotrophic factor (BDNF) [33] protein expression.
Others have reported that methamphetamine self-
administration can negatively impact cognitive function
[34–36] and cortical electrophysiology [37]. In addition, the
effects of withdrawal from extended methamphetamine self-
administration were found to be related to the survival of
hippocampal progenitor cells [34]. Moreover, withdrawal
from extendedmethamphetamine self-administration was also
accompanied by a dysphoric-like state, the neurobiological
basis of which is not known [38]. Taken together, the extended
methamphetamine self-administration model appears to result
in varied clinical and neurobiological outcomes. Nevertheless,

there is very little information on the transcriptional
effects of similar models of methamphetamine addiction.
In an attempt to fill that gap, we have conducted and
are continuing to conduct studies to investigate genome-
wide transcriptional and epigenetic effects of metham-
phetamine in the hope of discovering specific substrates
for methamphetamine-induced multifaceted behavioral
and biochemical effects.

In the experiments being reviewed here, we have used an
extended-accessmodel of intravenous methamphetamine self-
administration for eight consecutive daily sessions, with the
control rats receiving yoked saline injection [11, 24]. The rats
were given access to methamphetamine for 15 h per day and
were euthanized 2 h after the last session. As described by
others [39], rats exposed to extended daily sessions escalate
their intake of methamphetamine. More details of the long-
access self-administration paradigm can be found in our two
recent papers on the subject [11, 24]. Global gene expression
was measured in striatal tissues using Illumina 22K Rat mi-
croarrays. Detailed experimental protocols for tissue collec-
tion, RNA extraction, and performance ofmicroarray analyses
can also be found in our many publications on this subject [11,
14] and will not be described at length here. As reported by
Krasnova et al. [11], we found that 543 transcripts were
differentially expressed using a cutoff value of 1.7-fold
(p<0.05) (Fig. 2a). Using similar criteria, we have been able
to replicate array expression data from nucleus accumbens,
dorsal striatum, or midbrain by using quantitative PCR [14,
19, 40]. For the microarray data described here, Krasnova
et al. [11] had also used quantitative PCR to confirm meth-
amphetamine self-administration-induced changes in the ex-
pression of several immediate early genes (IEGs), neuropep-
tides, and plasticity-related genes. Of the methamphetamine-
regulated genes, 356 showed increased expression whereas
187 showed decreased expression in the striatum. These genes
were analyzed for networks and molecular functions by using
Ingenuity Pathways Analysis (Ingenuity Systems). Figure 2b
shows that methamphetamine can regulate many biological
processes in the dorsal striatum. Specifically, methamphet-
amine caused upregulation of transcripts that are components
of gene networks for neurological disease, cell-to-cell signal-
ing and interaction, nervous system development and function,
as well as cellular assembly and organization. Downregulated
networks include genes that participate in drug metabolism,
endocrine system development and function, cell-to-cell sig-
naling and interaction, and control of gene expression
(Fig. 2b). The observation that the drug alters the expression
of a large number of transcripts is consistent with the varied
clinical manifestations of methamphetamine-addicted patients
[4, 5]. These clinical presentations include deficits in executive
and memory functions, depression, and psychosis [4, 41]. Our
gene expression data thus raise the intriguing possibility
that there are subpopulations of methamphetamine addicts

Dopamine

Dopamine D1- and 
D2-like receptors

Protein kinase A 
CREB pathway

Early epigenetic changes and gene transcription: histone acetylation, 
histone phosphorylation, transcription factors, BDNF

Glutamate

Glutamate
receptors

Calcium-dependent 
phosphorylation cascades

Methamphetamine

Late epigenetic changes
Late transcriptional changes

Trophic factors
Signal transduction

Structural plasticity
Changes in functional connectivity

Disordered reward pathways

Methamphetamine Addiction
Cognitive Dysfunctions

Fig. 1 Epigenetic and transcriptional events involved in methamphet-
amine addiction. This figure describes our theoretical approach to meth-
amphetamine addiction. Although the figure suggests that the biochem-
ical and behavioral effects of methamphetamine appear to involve acti-
vation of dopaminergic and glutamatergic pathways, we are cognizant of
the fact that other neurotransmitter systems might also participate in
causing addiction and associated neuropsychiatric consequences. Activa-
tion of these neurotransmitter systems is followed by stimulation and/or
inhibition of epigenetic and transcriptional events that generate compul-
sive abuse of the drug. These compulsive behaviors might also be
secondary to a cortical disinhibition-induced subcortical hyperconnection
syndrome that is characterized by specific cognitive changes in human
methamphetamine addicts
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who might respond differentially to pharmacological thera-
peutic approaches.

Given the multifaceted effects of methamphetamine in the
central nervous system (CNS) that include decreased dopa-
mine (DA) and serotonin levels in the dorsal striatum, de-
creased striatal dopamine transporters, and abnormal glucose
metabolism [42–44], it is of interest that several genes that
participate in the regulation of transcription, including brain
abundant signal protein/brain acid soluble protein 1 (BASP1)
(Fig. 3a), ETS domain-containing protein (ELK1) (Fig. 3b),
and Kruppel-like zinc finger 10 (KLF10) (Fig. 3a), are upreg-
ulated by the drug (Table 1). Interestingly, BASP1 was dis-
covered in rat brain about two decades ago [45]. BASP1
attaches to plasma membrane in nerve terminals [46] and
can modify adjoining membrane region through interactions
with phosphatidylinositol 4,5-bisphosphate (PIP2) [47].
BASP1 has also been shown to regulate actin cytoskeleton
dynamics [48] and to be involved in initiating neurite out-
growth [49]. In addition to its role at nerve terminals, BASP1
was found to be a co-repressor for the Wilms’ tumor suppres-
sor protein (WT1) [50]. BASP1 is found in the nucleus where
it is localized on the promoters of WT1 target genes [51, 52].
BASP1 acts by recruiting histone deacetylase 1 (HDAC1) to
cause suppression of WT1 target genes [53]. Thus, the iden-
tification of these novel effects of methamphetamine suggests

that BASP1 might participate in methamphetamine-mediated
decreases in striatal gene expression (see Fig. 2b, Table 1).
This potential epigenetic effect of methamphetamine is sup-
ported by our recent data that identified HDAC1 as an impor-
tant regulator of methamphetamine-induced changes in the
expression of striatal glutamate receptors [15].

Another gene of interest whose expression is upregulated
in this model is Elk1 (Fig. 3b, Table 1) which is a member of a
ternary complex factor (TCF) subgroup of the family of the E-
twenty-six (ETS)-domain transcription factors [54]. Elk1 is an
important target of the canonical extracellular signal-regulated
kinases 1 (ERK1) and 2 (ERK2) pathways [55, 56]. In the
general context of addiction, various pharmacological agents
have been shown to activate ERK1 and ERK2 in a DA and
glutamate-dependent manner [57–60]. ERK1 and ERK2
are two very closely related kinases whose activation is de-
pendent on their phosphorylation by mitogen-activated pro-
tein kinases [61, 62]. ERKs, in turn, phosphorylate ELK1 [55,
56]. ELK1 is widely distributed in the adult rat brain [63] and
is involved in the regulation of functionally distinct networks
of genes [64], including c-fos [65, 66] and early growth factor
1 (Egr1) in the striatum [63, 67]. Thus, the methamphetamine-
induced expression of ELK1 suggests that the drug might
have altered the expression of some genes, in part, by activat-
ing the MAP-ERK-ELK1 pathway. This suggestion is

a

Non-regulated Genes

Regulated Genes

Up

Down

21,980 356

187

543

Up-regulated 
Networks (21)

Neurological Disease, Behavior, Cell-To-Cell Signaling and Interaction 
51(28)

Cell-To-Cell Signaling and Interaction, Cell Signaling, Renal and 
Urological Disease 

27(18)

Cell-To-Cell Signaling and Interaction, Drug Metabolism, Small Molecule 
Biochemistry 

22(17)

Cell-To-Cell Signaling and Interaction, Nervous System Development 
and Function, Cellular Assembly and Organization

21(16)

Down-regulated 
Networks  (10)

Drug Metabolism, Endocrine System Development and Function, Lipid 
Metabolism 

26(14)

Cell-To-Cell Signaling and Interaction, Nervous System Development 
and Function, Cardiovascular System Development and Function 

23(13)

Cell-To-Cell Signaling and Interaction, Cell Signaling, Behavior 
21(12)

N7.  Gene Expression, Cell-To-Cell Signaling and Interaction,
Hematological System Development and Function

19(11)

b

Fig. 2 Microarray analysis of
gene expression measured in the
rat striatum at 2 h after cessation
of methamphetamine self-
administration. a Description of
microarray results. The total
number of genes (21,980) on the
array is shown within the light
grey area of the circle. Also listed
is the total number of genes (543)
that are regulated by
methamphetamine. The light pink
box represents the number (356)
of upregulated genes whereas the
light green box shows the number
(187) of downregulated genes. b
Molecular networks of genes
differentially affected by
methamphetamine self-
administration. These networks
were generated using Ingenuity
Pathway Analysis. The networks
are ranked according to their
scores, and eight networks of
interest are shown. The number of
genes in each network is shown in
parentheses. Note that several of
the networks contain genes that
participate in cell-to-cell signaling
and interactions
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Fig. 3 Methamphetamine self-
administration causes differential
expression of genes involved in
several networks. a A network of
genes involved in neurological
disease, behavior, and cell-to-cell
signaling and interaction. This list
includes BASP1, BDNF, and
some phosphatases. b A network
of genes that participate in cell-to-
cell signaling and small molecule
metabolism. These genes include
CCK, ELK1, and neurotensin. c
A network of upregulated genes
involved in nervous system
development and function as well
as cellular assembly and
organization. Among these genes
are neuromedin U and syntaxin
1A. These gene networks
emphasize the complex molecular
effects of methamphetamine in
the brain
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Table 1 Partial list of 2-h METH-upregulated genes in comparison to 1-month group

Symbol Entrez gene name Fold change

2 h 1 month

Calcium ion binding

CADPS2 Ca++-dependent secretion activator 2 2.56 −1.35
NECAB3 N-terminal EF-hand calcium-binding protein 3 8.53 −1.94

Cell adhesion

CNTNAP4 Contactin-associated protein-like 4 3.71 −1.03
DSCAM Down syndrome cell adhesion molecule 1.78 −1.49

Cell growth

DCBLD2 Discoidin, CUB and LCCL domain containing 2 4.63 −1.47
INHBE Inhibin, beta E 3.44 1.25

Cell migration

SNX13 Sorting nexin 13 2.12 1.34

Development

PLAC1 Placenta-specific 1 5.11 −1.70
DNA binding

ETV2 Ets variant 2 4.73 1.00

KLF10 Kruppel-like factor 10 1.97 1.25

TP53I11 Tumor protein p53 inducible protein 11 6.34 −1.26
Ion transport

CACNA1G Calcium channel, voltage-dependent, T type, alpha 1G subunit 4.41 −1.36
HCN1 Hyperpolarization-activated cyclic nucleotide-gated K+ channel 1 2.92 −1.99
KCNC2 Potassium voltage-gated channel, Shaw-related subfamily, member 2 1.90 −2.56
KCNH2 Potassium voltage-gated channel, subfamily H, member 2 9.90 −1.77
SLC17A7 Solute carrier family 17, member 7 3.95 −1.06
SLC35B2 Solute carrier family 35, member B2 1.92 −1.39
SLC8A1 Solute carrier family 8 (sodium/calcium exchanger), member 1 7.56 1.04

Metabolism

AGL Amylo-alpha-1, 6-glucosidase, 4-alpha-glucanotransferase 6.39 −2.02
CDO1 Cysteine dioxygenase type 1 1.76 −1.56
HSD3B2 hydroxy-δ-5-steroid dehydrogenase, 3 β- and steroid δ-isomerase 2 4.52 −1.23

Neuropeptide/hormone activity

CCK Cholecystokinin 7.93 −1.47
CORT Cortistatin 3.53 1.30

FST Follistatin 2.20 1.00

NMU Neuromedin U 3.84 −1.00
NTS Neurotensin 3.08 −1.86
PNOC Prepronociceptin 3.42 −2.35
VIP Vasoactive intestinal peptide 8.89 −5.03

Neurotransmitter transporter

CPLX3 Complexin 3 3.51 1.93

Neurotransmitter release

STX1A Syntaxin 1A (brain) 2.30 −1.10
SYN2 Synapsin II 2.12 1.03

SYP Synaptophysin 1.74 −1.53
Protein binding

INCENP Inner centromere protein antigens 135/155 kDa 2.33 1.16

MED31 Mediator complex subunit 31 4.78 1.19

Protein transport
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consistent with previous demonstration that some amphet-
amine analogs can increase ERK phosphorylation [68–70]
and with the report that ELK1 activation is involved in
cocaine-induced behavioral and molecular alterations [71].
This notion is also supported by the fact that the ERK
mitogen-activated protein (MAP) kinase pathway is involved
in cognitive processes [72] that are involved in the develop-
ment of addiction [10].

Further evidence for the involvement of phosphorylation/
dephosphorylation cascades in methamphetamine addiction is
also provided by the observation of methamphetamine-
induced increased phosphorylation of cyclic AMP response

element binding (CREB) protein in the rat striatum [11].
CREB is a member of the CREB/activating transcription
factor (ATF) family of transcription factors and is phosphor-
ylated by cAMP-dependent protein kinase A (PKA) and other
kinases [73]. Interestingly, the MAPK/ERK cascade has been
shown to phosphorylate both ELK1 and CREB to increase c-
fos and Egr1 expression in the striatum [67] and to control
long-term potentiation-dependent transcription in the hippo-
campus [74]. CREB phosphorylation is indeed involved in the
propagation of signals from various neurotransmitters
[75–77]. CREB phosphorylation also promotes the recruit-
ment of co-activators, such as CREB-binding protein (CBP)/

Table 1 (continued)

Symbol Entrez gene name Fold change

2 h 1 month

CYTH2 Cytohesin 2 1.75 −1.40
Proteolysis

PRSS12 Protease, serine, 12 (neurotrypsin, motopsin) 36.14 1.40

Signal transduction

ADCYAP1 Adenylate cyclase activating polypeptide 1 (pituitary) 2.32 −1.15
CHRNA4 Cholinergic receptor, nicotinic, alpha 4 (neuronal) 5.60 −1.05
CTHRC1 Collagen triple helix repeat containing 1 6.12 −1.80
DUSP12 Dual-specificity phosphatase 12 2.29 −1.73
DYRK3 Dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 3 4.62 1.45

EPHB6 EPH receptor B6 1.99 −1.47
GRIN2A Glutamate receptor, ionotropic, N-methyl D-aspartate 2A 1.84 −1.32
NPTX1 Neuronal pentraxin I 5.79 1.06

PIK3CB Phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit β 5.50 −1.33
PTPRE Protein tyrosine phosphatase, receptor type, E 3.18 1.14

PTPRU protein tyrosine phosphatase, receptor type, U 6.55 −1.31
RASA3 RAS p21 protein activator 3 8.44 −1.20
RASSF5 Ras association (RalGDS/AF-6) domain family member 5 1.70 −1.68
RGS12 Regulator of G-protein signaling 12 2.14 −1.17
TAB1 TGF-beta activated kinase 1/MAP3K7 binding protein 1 3.94 −1.02
WNT4 Wingless-type MMTV integration site family, member 4 7.48 −1.69
YWHAH Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation

protein
1.83 −1.58

Transcription

BASP1 Brain abundant, membrane attached signal protein 1 1.74 −1.40
CCDC71 Coiled-coil domain containing 71 2.96 −1.60
ELK1 ELK1, member of ETS oncogene family 3.72 −1.23
GABPB2 GA binding protein transcription factor, beta subunit 2 3.48 −2.07
LIF Leukemia inhibitory factor 6.10 −1.97
TLE3 Transducin-like enhancer of split 3 1.74 −1.43

Trophic factor

BDNF Brain-derived neurotrophic factor 3.28 −1.02
VGF Nerve growth factor inducible 7.02 −1.58

The experimental model andmicroarray analyses were performed as described in the text. This partial list of genes was generated from the 2 hmicroarray
data. The expression data were then compared to the fold changes in expression obtained for these genes after 1 month of withdrawal. To be included, the
genes had to meet the inclusion criteria: + 1.7-fold at p<0.05 at the 2 h time point
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p300, to the basal transcriptional machinery, a process that is
followed by increased expression of CREB target genes [78].
These genes include immediate early genes (IEGs) such as
arc, c-fos, egr1, several dual-specificity phosphatases
(DUSPs), as well as BDNF [79, 80]. Consistent with these
observations, we found that methamphetamine self-
administration was accompanied by increased c-fos and
BDNF at the early time point of withdrawal from drug taking
by the rats [11]. These results are consistent with the report of
Cornish et al.[13] who had reported significant increases in c-
Fos protein expression in the dorsal striatum and cortex after a
3-week period of METH self-administration of 2-h daily
sessions. Their paradigm is different from the one used in
our study because the rats had 15-h access to drug for 8 days
[11]. In both models, nevertheless, the METH effects might
have occurred via stimulation of striatal DA receptors, follow-
ed by activation of various kinases, phosphorylation of
CREB, and consequent CREB-mediated transcription
[81–84]. This idea is supported by our findings that METH
self-administration was accompanied by increased recruit-
ment of phosphorylated CREB on the promoters of c-fos,
fosB, and Bdnf [11]. In addition, these observations indicate
that c-fos, fosB, and Bdnf genes might be co-regulated in some
brain regions at both epigenetic and transcriptional levels and
may work together to maintain some of the plasticity changes
that might generate the regional substrates of methamphet-
amine addiction. This conclusion is supported by the demon-
stration of the important roles that activation of CREB and
IEGs, including c-fos and egr1, plays in processes related to
l ea rn ing and memory fo rma t ion [85–87] . The
methamphetamine-induced increases in Bdnf messenger
(m)RNA expression are accompanied by increased BDNF
protein expression at the early time point. Our observations
of METH self-administration-induced BDNF expression is
consistent with those of McFadden et al. [33] who also re-
ported that METH self-administration was accompanied by
increased BDNF expression in the rat hippocampus. Taken
together, it appears that METH self-administration might in-
fluence the expression of certain genes in various brain re-
gions including the cortex, striatum, and hippocampus [11, 13,
33]. These results are also consistent with clinical studies that
had reported increases in BDNF levels in the plasma of
chronic METH users [88]. Moreover, this notion is supported
by the possibility that BDNF signaling may play an integral
part in producing plastic changes that lead to addiction [89]
through processes that involved changes in the expression of
proteins such as synapsin and synaptophysin that are involved
in synaptic functions [90, 91]. Our findings that methamphet-
amine does increase the expression of synaptophysin
(Fig. 3a), syntaxin 1A (Fig. 3c), and synapsins [11] provide
further evidence that altered synaptic plasticity is at the core of
methamphetamine self-administration. Synapsins are a family
of phosphoproteins that are located in presynaptic terminals

[92, 93]. They promote synaptogenesis and regulate vesicle
dynamics and neurotransmitter release [94–96], functions that
are dependent on phosphorylation/dephosphorylation events
[97, 98]. Thus, our observations of methamphetamine-
induced changes in the expression of these synaptic proteins
might be relevant to the report that repeated methamphet-
amine exposure causes changes in the density of dendritic
spines on medium spiny neurons [99], changes that are de-
pendent on activation of the BDNF-tyrosine kinase receptor,
type 2 (TrkB) signaling pathway [100].

Related to the discussion of the role of a potential conver-
gence of the MAP/ERK/ELK1 and CREB phosphorylation
pathways in methamphetamine addiction (Fig. 4), it is of
interest that the microarray analysis also identified several
phosphatases, including dual-specificity phosphatase 12
(DUSP12), protein tyrosine phosphatase receptor, type E
(PTPRE), and protein tyrosine phosphatase receptor, type U
(PTPRU) that were also upregulated by methamphetamine
se l f -admin is t ra t ion (F ig . 3a , Tab le 1) . Pro te in
phosphorylation/dephosphorylation processes are major
mechanisms that regulate signal transduction pathways
[101]. These processes are tightly regulated by protein tyro-
sine kinases (PTKs) and phosphatases (PTPs) that are highly
expressed in the brain [101]. Other members of the general
PTP family can also remove phosphate groups from
phosphoserine, phosphothreonine, and phosphotyrosine resi-
dues and constitute a family of versatile enzymes called
DUSPs [102]. PTPs are also divided into receptor-like or
membrane-bound PTP (RPTP) and non-receptor or cytosolic,
soluble PTPs [103]. DUSPs serve to provide negative feed-
back toMAPK and cyclin-dependent kinase (CDK) pathways
by deactivating these enzymes via dephosphorylation events
[102]. Because of their ubiquity, the DUSPs are involved in
the regulation of many cellular functions [104]. However, in
contrast to other DUSPs such as DUSP1-DUSP10, the role of
DUSP12, an atypical DUSP [105], in the central nervous
system has not been investigated actively. Nevertheless,
DUSP12 has been shown to interact with Hsp70, and its
overexpression protects against heat shock- and hydrogen
peroxide-induced cell death, a function that requires its phos-
phatase activity [106]. Its antioxidative properties might be
due to the fact that DUSP12 can sense oxidative stress by its
thiol-rich zinc-coordinating domain [107]. Although the role
of DUSP12 in methamphetamine addiction remains to be
clarified, its increased expression in the present model is
consistent with the fact that acute injections of the drug can
cause oxidative stress in various brain regions [3, 108].
Increased markers of striatal toxicity have also been found in
rats that self-administered methamphetamine [24] in a pattern
similar to the one used in the present report. Together, these
observations suggest that methamphetamine self-
administration may result in oxidative stress in the rat
striatum.
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In addition to DUSP12, PTPRE and PTPRU were also
upregulated in the methamphetamine self-administration
model. PTPRE and PTPRU are members of the receptor-like
PTPs [109] that are expressed in the brain [110–113]. PTPRE
has been shown to regulate voltage-gated potassium channels
in Schwann cells [114]. Of interest, we observed significant
increases in the expression of KCNC2 and KCNH2 in the
methamphetamine-treated rats (Fig. 3c, Table 1). Related to
this discussion is the fact that PTPRE can inhibit ERK1 and
ERK2 kinase activities and block ELK1-induced transcrip-
tional activity [115] in a fashion similar to the DUSPs [102].
PTPRU (also called RPTP lambda or psi) is co-localized with
cell adhesion molecules including catenin and E-cadherin
[116]. The phosphatase contains a large region that is homol-
ogous to the intracellular cellular domain of cadherins and
interacts directly with and dephosphorylates beta-catenin
[117], an important component of Wnt signaling [118]. This
action of PTPRU leads to inhibition of beta-catenin signaling
[119, 120]. PTPRU also participates in Delta/Notch signaling
[121]. This phosphatase is highly expressed in the midbrain/
hindbrain boundary [122] and plays important role in the
development of the midbrain [120]. Interestingly, PTPRU
mRNA expression is regulated by the combined action of
Nr4a2 and Pitx3 [111], both of which are upregulated by
methamphetamine administration [14, 21]. These

observations support the view that methamphetamine self-
administration can activate gene networks that participate in
various brain regulatory functions. Our results also suggest
that the drug might cause activation of phosphorylation/
dephosphorylation cascades to regulate and balance the activ-
ity of multiple signaling pathways during the transition to
escalating methamphetamine intake in this model (see Fig. 4
for a scheme). Our results also support the thesis that drug
addiction is related to changes in synaptic plasticity that may
be mediated by the activation of a combination of molecular
networks that impact neurotransmission in the dorsal striatum.
Finally, the idea that protein phosphatases might be involved
in addiction is supported by the observation that striatal PTP
alpha promotes alcohol addiction in rodents [123].

Methamphetamine self-administration is also accompanied
with increases in KLF10 expression (Fig. 3a). KLF10 is a
member of the family of Sp1/Kruppel-like zinc finger tran-
scription factors [124, 125]. KFL10 contains three repression
(R1–R3) domains at the N-terminal [126], with the R1 domain
being important for its interaction with the co-repressor,
Sin3A, which suppresses gene expression by recruiting
HDACs [127]. KLF10 can also suppress transcription via its
interaction with Jumonji AT-rich interactive domain 1B/
lysine-specific demethylase 5B (JARID1B/KDM5B) [128],
an enzyme that removes methyl residues from trimethylated
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Fig. 4 Methamphetamine self-
administration causes co-
activation of CREB- and ELK1-
dependent pathways in the rat
striatum. The scheme shows the
potential activation of theMAPK-
ERK-ELK1 and PKA-CREB
pathways via stimulation of both
dopamine and glutamate
receptors. The theoretical scheme
also suggests that activation of
these two pathways would also
lead to chromatin changes that
might be responsible for the
changes in the expression of
genes such as BDNF and some
immediate early genes (IEGs).
Although the scheme has focused
on the dopaminergic and
glutamatergic systems for the
sake of simplicity, other
neurotransmitter systems
including neuropeptides might
also participate in the long-term
alterations in gene expression in
the striatum (see Krasnova
et al.[11])
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lysine 4 of histone 3 (H3K4me3) [129], a marker that is
associated with active gene transcription [130]. The increased
KLF10 expression might therefore be an attempt to correct
methamphetamine-induced increased H3K4me3 abundance
in the striatum [11]. The potential increased expression of
repressor proteins during methamphetamine self-
administration is consistent with the observations of decreased
expression of several gene networks (Fig. 2b) in this model of
methamphetamine addiction. This discussion suggests the
possibility that KLF10 might be an important regulator of
methamphetamine-induced epigenetic events. The potential
role for these epigenetic marks in the long-term effects of
the drug can also be inferred from the observed downregula-
tion of several gene networks at a later time point of with-
drawal from methamphetamine self-administration (see dis-
cussion below). In any case, more studies are needed to dissect
the role of methylation processes in methamphetamine addic-
tion [12], given the important of this histone mark in various
biological functions [131].

Delayed Transcriptional Changes After
Methamphetamine Self-Administration

Methamphetamine-addicted individuals show differential out-
comes during the course of various therapeutic modalities [2,
8]. Interviews at 2–3 years after treatment showed that 50 %
had returned to using drugs, with 36 % doing so within the
f i rs t 6 months af ter the treatment period [8] .
Methamphetamine addicts appear to relapse for a multitude
of reasons that include pleasure seeking, impulsivity, habits,
and pain avoidance [132]. In animal models of methamphet-
amine addiction, the number of lever pressing for an absent
methamphetamine award is higher at later withdrawal times
than that observed during early withdrawal [133], a phenom-
enon that has been referred to as incubation of drug craving
[134]. Recently, it was reported that animals that were ren-
dered abstinent from methamphetamine self-administration
by response-contingent foot-shocks also demonstrated incu-
bation of methamphetamine craving [135]. These clinical and
preclinical results suggest that different molecular changes
that occur during early and/or late withdrawal states might
differentially influence striatal functions and cause different
motoric behavioral outcomes that might manifest as larger
number of lever presses at longer withdrawal times [133,
135]. The notion that striatal gene expression changes might
play a role in behaviors observed after several weeks of
withdrawal is consistent with data from microarray analyses
that we describe below.

In the set of experiments examining the delayed effects of
methamphetamine withdrawal, rats underwent the same self-
administration procedure described elsewhere [11, 24] and
were euthanized at 1 month after the last session. Global

striatal gene expression was again measured using Illumina
22K Rat microarrays. We found that 673 transcripts were
differentially expressed at that time point (Fig. 5a). Of these
methamphetamine-regulated genes, only 82 were upregulated
whereas 591 were downregulated. These results are different
from those obtained at the early withdrawal time point when
the majority of genes were upregulated (see Fig. 2a). The
observation of large number of downregulated genes after
methamphetamine withdrawal is consistent with previous re-
sults showing that methamphetamine can cause increased
expression of histone deacetylases (HDACs) in the nucleus
accumbens [14] and the dorsal striatum [15]. HDACs are
enzymes that can cause histone deacetylation and repression
of gene expression [136, 137]. HDACs are important regula-
tors of synaptic formation, synaptic plasticity, and long-term
memory formation [138–141]. Several HDACs also appear to
play significant roles in various models of drug abuse and
addiction [142–147].

The differentially expressed genes were analyzed for net-
works and molecular functions by using Ingenuity Pathways
Analysis (Ingenuity Systems). Figure 5b shows that metham-
phetamine can regulate many biological processes in the
dorsal striatum. Specifically, withdrawal from methamphet-
amine self-administration is accompanied with upregulation
of transcripts that are components of gene networks involved
in embryonic and organ development, amino acid metabo-
lism, cellular growth and proliferation, and cellular assembly
and organization, among others (Table 2). Downregulated
networks include genes that participate in developmental dis-
orders, neurological diseases, cell-to-cell signaling, and car-
diovascular development and function (Fig. 5b, Table 2).

One of the upregulated genes of interest is the eukaryotic
initiation factor alpha (eIF2alpha) (Fig. 6a, Table 2) because of
its potential involvement in memory formation [148].
Methamphetamine-addicted individuals are known to suffer
frommemory deficits that may remain obvious even after long
periods of drug withdrawal [44]. The clinical observations
suggest that methamphetamine addiction might be associated
with abnormalities in protein synthesis since long-term mem-
ory is dependent on de novo protein synthesis that is regulated
by eIF2alpha [148, 149]. Newly translated proteins are
thought to indeed contribute to the formation of new synapses
that are involved in long-term storage of memory traces [150,
151]. In eukaryotes, translation initiation is stimulated by the
delivery of initiator methionyl-tRNA in the form of an
eIF2*GTP*Met-tRNA ternary complex [152]. This complex
also includes eIF1A and eIF3 and binds near the 5′ end of
mRNAs to ini t ia te t ransla t ion [153] . Thus, the
methamphetamine-induced increased eIF2alpha mRNA sug-
gests the possibility that there might be increased expression
of certain proteins at this delayed time point after withdrawal
from the drug. However, the possibility also exists that these
changes might constitute compensatory increases due to
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decreased expression of a large number of proteins, given our
observations that many transcripts are downregulated in the
methamphetamine-treated rats (Table 2). This idea is also
consistent with our demonstration that rats that had undergone
the methamphetamine self-administration paradigm showed
decreased BDNF, TrkB, and delta fosB protein levels at the 1-
month withdrawal time point ([11]; see discussion above). A
recent study has also reported that there is a fine regulation of
transcription and translation to modulate gene expression
under different stressful conditions including oxidative stress
and heat shock [154]. It may be therefore possible to conclude
that these biochemical events might trigger compensatory
responses that included increased eIF2alpha transcription be-
cause exposure to methamphetamine causes oxidative stress,
heat shock, and endoplasmic reticulum (ER) stress [108, 155,
156].

It is also of interest to discuss the changes in eIF2alpha in
relationship to the cognitive deficits observed in some meth-
amphetamine abusers [44]. For example, another neuropsy-
chiatric disorder in which patients show cognitive deficits is
Alzheimer’s disease (AD) [157]. The brains of these patients
show accumulation of beta-amyloid [158]. AD brains also
show increased levels of activated and phosphorylated

double-stranded RNA-dependent kinase (PKR) [159].
Animal models of AD also show activated PKR [159, 160].
PKR is a serine-threonine protein kinase that is involved in
cellular responses to oxidative stress, ER stress, and decreased
expression of trophic factors [161]. Importantly, PKR phos-
phorylates eIFalpha and leads to decreased protein synthesis
[152, 162]. Another eIF2alpha kinase, the ER-responsive
PKR-like ER-resident kinase (PERK) [163], is also activated
in animal models of AD [164]. Together, these observations
had suggested that these stress-responsive kinases might play
an important role in the cognitive manifestations of AD. This
idea was tested by Ma et al. [165] who reported that PERK
deletion prevented deficits in protein synthesis and in spatial
memory in mice models of AD. These findings are relevant to
our discussion of methamphetamine addiction because meth-
amphetamine also activates the ER PERK-dependent pathway
[156]. Therefore, the possibility exists that cognitive deficits
observed in methamphetamine-addicted individuals might al-
so be due to ER stress-dependent PERK-mediated eIF2alpha
phosphorylation, followed by decreased expression of
plasticity-related proteins as demonstrated for BDNF and
TrkB protein expression in this methamphetamine self-
administration model [11]. The idea that there might be a
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Table 2 Partial list of 1-month METH-regulated genes in comparison to 2-h group

Symbol Entrez gene name Fold change

2 h 1 month

Autophagy

TBC1D14 TBC1 domain family, member 14 1.41 −3.67
Cell cycle

CCNA1 Cyclin A1 1.57 −1.81
CD82 CD82 molecule 1.05 −1.71
CDC25A Cell division cycle 25A 1.27 −4.25
CDK4 Cyclin-dependent kinase 4 1.17 −1.7
CHEK2 Checkpoint kinase 2 1.12 −3.59
GADD45G Growth arrest and DNA-damage-inducible, gamma 1.21 −1.73

Cell differentiation

BAMBI BMP and activin membrane-bound inhibitor 1.42 −1.96
DHH Desert hedgehog −1.85 3.06

DLX1 Distal-less homeobox 1 1.16 −1.71
LIMD1 LIM domains containing 1 1.72 −2.19
NNAT Neuronatin −1.03 −2.11
VPS52 Vacuolar protein sorting 52 homolog 1.26 −2.70

Chromatin remodeling

ARID2 AT-rich interactive domain 2 1.46 −2.84
ARID4A AT-rich interactive domain 4A −1.20 −1.73
CTR9 CTR9, Paf1/RNA polymerase II complex component 1.32 −1.74
EPC1 Enhancer of polycomb homolog 1 1.44 4.78

RNF187 Ring finger protein 187 1.10 −3.91
RNF113A Ring finger protein 113A 1.22 −1.71
Sp2 Sp2 transcription factor −1.22 3.14

Coagulation

PLG Plasminogen 1.48 −1.94
Cytoskeleton

KIF4A Kinesin family member 4A 1.42 −1.95
MFAP1 Microfibrillar-associated protein 1 2.34 −2.17

DNA repair

MPG N-methylpurine-DNA glycosylase 2.00 −1.88
RAD51 RAD51 recombinase 1.82 −2.03

DNA replication

POLD1 Polymerase (DNA directed), delta 1, catalytic subunit −1.02 −1.71
POLH Polymerase (DNA directed), eta 1.22 −5.38

Growth factor

HGF Hepatocyte growth factor −1.98 −1.87
OSM oncostatin M −1.00 −3.9

Homeostasis

OCM Oncomodulin −2.05 2.63

Immune system

Klra4 Killer cell lectin-like receptor, subfamily A, member 4 −1.93 −3.10
Ion transport

SLC22A7 Solute carrier family 22, member 7 1.08 −1.85
Metabolism

PLD4 Phospholipase D family, member 4 1.50 −1.76
PROCA1 Protein interacting with cyclin A1 1.37 −3.54
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general reduction of protein synthesis in the methamphet-
amine self-administration model is supported by the observa-
tion of decreased expression of another translation initiation
factor, eIF2D [166] (Fig. 6b).

In addition to the possible involvement of changes in
protein synthesis in the manifestation of methamphetamine
addiction, our study has documented substantial decreases in
the levels of transcripts that are transcription regulators
(Fig. 6b–c, Table 2). These include AT-rich interactive domain
2 (ARID2) (Fig. 6a), ARID4A (Fig. 6b), junD (Fig. 6c), and
leucine-rich repeats and calponin homology (CH) domain
containing 4 (LRCH4) (Fig. 6b), among others (Table 2).
JunD is an intronless gene [167] that is regulated at the

translational level [168]. JunD is a member of the activating
protein 1 (AP1) family of transcription regulators [169, 170].
The AP1 complexes contain members of the FOS (c-fos, fosB,
Fra1, Fra2), JUN (c-jun, junB, and junD), and ATF/CREB
(multiple ATFs) families [171, 172]. The Jun family members
can homodimerize or heterodimerize with FOS family mem-
bers to regulate gene expression. AP1 complexes also differ in
their binding and transactivating efficiencies based on their
compositions and they can either activate or repress the tran-
scription of genes that mediate multiple cellular functions [171,
173, 174]. JunD binds to the TPA-responsive element when it
is in the form of homodimers or heterodimers with FOS and
JUN family members [175]. In contrast, it binds CRE when it

Table 2 (continued)

Symbol Entrez gene name Fold change

2 h 1 month

ALDOB Aldolase B, fructose-bisphosphate −1.00 −1.93
Hddc3 HD domain containing 3 1.51 −1.87

Photoreceptor

RHO Rhodopsin −1.22 −3.70
Protein binding

ANKRD50 Ankyrin repeat domain 50 3.69 4.48

LRRC59 Leucine-rich repeat containing 59 1.15 −1.76
Proteolysis

MMP13 Matrix metallopeptidase 13 (collagenase 3) −1.00 −4.18
Signal transduction

DUSP10 Dual-specificity phosphatase 10 1.43 −3.00
DUSP19 Dual-specificity phosphatase 19 −1.45 −3.41
HIPK3 Homeodomain-interacting protein kinase 3 1.04 1.82

Structural

LAMB3 Laminin, beta 3 1.12 −2.14
Transcription

IKZF2 IKAROS family zinc finger 2 (Helios) 1.11 −2.32
JUND jun D proto-oncogene −1.14 −1.72
KLF12 Kruppel-like factor 12 2.17 −3.15
LEO1 Leo1, Paf1/RNA polymerase II complex component 1.00 −1.78
LMO1 LIM domain only 1 (rhombotin 1) −1.34 −1.80
LRCH4 Leucine-rich repeats and calponin homology domain containing 4 −1.52 −2.50
NFYB Nuclear transcription factor Y, beta 1.38 −2.37
NKX2-4 NK2 homeobox 4 1.29 3.55

RCOR2 REST co-repressor 2 1.19 −4.88
TAL2 T-cell acute lymphocytic leukemia 2 −1.54 −2.08
YY1 YY1 transcription factor 1.35 −2.52

Translation

EIF2A Eukaryotic translation initiation factor 2A, 65 kDa −2.68 3.86

EIF2D Eukaryotic translation initiation factor 2D 1.37 −1.81

The experimental model and microarray analyses were performed as described in the text. This partial list of genes was generated from the 1 month
withdrawal dataset. The gene expression data were then compared to the fold changes obtained for these genes at the 2h time point. To be included, the
genes had to meet the inclusion criteria: + 1.7-fold at p < 0.05 at the 1 month withdrawal time point
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Fig. 6 Withdrawal form
methamphetamine self-
administration causes differential
changes in the expression of
genes involved in several
networks. a A network of
upregulated genes involved in
tissue morphology and cellular
assembly. b A network of
downregulated genes that
participate in cell cycle, DNA
replication, and repair, as well as
cell death and survival. c A
network of downregulated genes
involved in cellular and tissue
development. This network
includes several transcription
regulators including JunD,
KLF12, and RCOR2
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is in the form of heterodimers with ATF family members [176,
177]. The JUN family members also display different patterns
of expression during cell cycle progression, with JunD show-
ing no significant changes [178]. JunD protects against p53-
induced cell death [179] and regulates the expression of genes
involved in cellular antioxidant responses [180, 181] and in-
flammatory responses [182, 183]. JunD is also involved in
nerve growth factor (NGF)-induced upregulation of Nr4a1 in
PC12 cells [184]. JunD also dimerizes with Fra2 to mediate
NGF-mediated changes in gene expression in PC12 cells
[185]. The protein also dimerizes with FosB to regulate
okadaic acid-induced transcriptional changes [186] and
glutamate-mediated death [187]. JunD also regulates the ex-
pression of proenkephalin expression in in vitro models [188].
Altogether, these studies had identified a larger number of
JunD target genes in various organ systems (see [183] for an
extensive list of JunD-regulated genes). JunD is also highly
expressed in the nervous system [189–191] where its expres-
sion is responsive to methamphetamine administration [22].
The observations of decreased JunD expression after 1 month
of withdrawal from methamphetamine self-administration are
consistent with our previous observations that repeated meth-
amphetamine injections for 2 weeks caused decreases in
striatal JunD expression [22]. The decreased JunD expression
suggests that alterations in JunD expression might play an
important role in regulating the expression of the large number
of genes that are downregulated at the 30-day withdrawal time
point. Because one of JunD binding partners, deltaFosB, is
also downregulated at that time [11] and because deltaFosB is
also a key regulator in gene expression in other models of drug
addiction [17], our findings suggest that, together, the down-
regulation of both JunD and deltaFosB model might serve to
generate the increased motoric behaviors (e.g., increased lever
presses) observed after lengthywithdrawals frommethamphet-
amine self-administration [135]. Together, these observations
implicate AP1 transcription factors as important players in
addiction processes.

Another transcription regulator of interest is AT-rich interac-
tive domain 2 (ARID2) (Fig 6b). ARID2 [192, 193] is a subunit
of the polybromo- and BRG1-associated factor (PBAF)
chromatin-remodeling complex that regulates gene expression
[194, 195]. The protein contains an N-terminal AT-rich DNA
binding domain and two C-terminal motifs that serve to bind
DNA [196]. The ARID gene family consists of 15 members that
are conserved from yeast to humans [197]. The ARID2-
containing complex uses energy generated by ATP hydrolysis
to remodel chromatin and facilitate binding of transcription
factors, with resulting increased in gene expression [198, 199].
The ARID proteins have also been implicated in the control of
cell growth and differentiation [200, 201]. Thus, decreased
ARID2 expression is consistent with the results of methamphet-
amine withdrawal-induced decreased levels of many transcripts
at the delayed time point (see Table 2). In addition to ARID2,

another member of the ARID chromatin-remodeling genes,
ARID4A, also showed decreased expression at that time point
(Fig. 6b). ARID4A possesses an ARID domain, a
chromodomain, a Tudor domain, and two repression domains
[197, 202]. Chromodomains and Tudor domains regulate bind-
ing to methylated lysines in the tails of histones H3 and H4 [203,
204]. ARID4A binds the retinoblastoma protein (pRB) [205,
206], an important regulator of cell proliferation and differentia-
tion [207]. Binding of ARID4A to pRB has been reported to
suppress E2F target genes by both HDAC-dependent and
HDAC-independent mechanisms [202]. The downregulation of
these two ARID transcripts whose protein products are involved
in transcription regulation further implicates epigenetic mecha-
nisms in the long-term effects of methamphetamine withdrawal.

Thus, it is of interest that the transcription regulator,
LRCH4 (also called LRRN1 or SAP25), a component of the
mSin3 co-repressor complex [208, 209] that is used by several
classes of transcriptional repressors including MeCP2 [210]
and Ikaros [211], is also downregulated after a lengthy with-
drawal from methamphetamine. Interestingly, the Ikaros fam-
ily zinc finger 2 (Helios, IKZF2) is also downregulated at the
same time point (see Fig. 6b). Helios is involved in the
silencing of IL2 gene in regulatory T cells [212], and its
presence in striatal cells [213] suggests that Helios might play
a comparable role in the brain immune responses to metham-
phetamine [43, 214]. In any case, the fact that the levels of
several transcripts of proteins that participate in co-repressor
complexes are decreased at 1 month after methamphetamine
withdrawal suggests that there might be a general depressing
effect on transcription at that time, with only a few genes
being upregulated after that time interval. It remains to be
determined whether the upregulated genes are targets of these
co-repressor complexes since the downregulation of transcrip-
tional suppressors would result in their increased transcription.

Concluding Remarks

In summary, methamphetamine use disorder is a chronic
neuropsychiatric disorder that is characterized by a complex
clinical course with periods of active drug-taking behaviors
filled with bingeing episodes interspersed between drug-free
intervals and repeated relapses. Although various neuroimag-
ing studies have identified potential loci for the functional
neuroanatomy of its varied clinical presentations, much re-
mains to be done to identify the pathobiological substrates of
methamphetamine addiction. It is important to note that hu-
man methamphetamine addicts use the drug according to
different scheduling patterns and the amount of drug ingested.
They also present with a diversity of clinical findings includ-
ing depression, suicidal ideations, and psychotic symptoms.
These clinical observations suggest that the drug might cause
differential molecular and neurobiological alterations that
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produced complex clinical pictures. These statements suggest
the need for the development of a diversity of models in which
investigators could study the molecular impact of different
drug doses that are self-administered by rats. Importantly,
similar to the case of other complex neuropsychiatric disor-
ders such as the major affective disorders or schizophrenia, it
is very likely that single-gene approaches will fail to provide a
comprehensive understanding of the basic neurobiology of
drug addiction. Approaches that include genome-wide studies
in conjunctions with models that are more representative of
the human condition will create better opportunity to clarify
the molecular neuropathology of methamphetamine addic-
tion. These approaches promise to help to generate testable
hypotheses and ideas that might be translatable to therapeutic
approaches. The veracity of this notion is presently being
tested in our laboratory by using behavioral models in con-
junction with modern molecular techniques.
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