513 research outputs found

    Genetic background influences tumour development in heterozygous Men1 knockout mice

    Get PDF
    Multiple endocrine neoplasia type 1 (MEN1), an autosomal dominant disorder caused by MEN1 germline mutations, is characterised by parathyroid, pancreatic and pituitary tumours. MEN1 mutations also cause familial isolated primary hyperparathyroidism (FIHP), a milder condition causing hyperparathyroidism only. Identical mutations can cause either MEN1 or FIHP in different families, thereby implicating a role for genetic modifiers in altering phenotypic expression of tumours. We therefore investigated the effects of genetic background and potential for genetic modifiers on tumour development in adult Men1+/- mice, which develop tumours of the parathyroids, pancreatic islets, anterior pituitary, adrenal cortex and gonads, that had been backcrossed to generate C57BL/6 and 129S6/SvEv congenic strains. A total of 275 Men1+/- mice, aged 5–26 months were macroscopically studied, and this revealed that genetic background significantly influenced the development of pituitary, adrenal and ovarian tumours, which occurred in mice over 12 months of age and more frequently in C57BL/6 females, 129S6/SvEv males and 129S6/SvEv females, respectively. Moreover, pituitary and adrenal tumours developed earlier, in C57BL/6 males and 129S6/SvEv females, respectively, and pancreatic and testicular tumours developed earlier in 129S6/SvEv males. Furthermore, glucagon-positive staining pancreatic tumours occurred more frequently in 129S6/SvEv Men1+/- mice. Whole genome sequence analysis of 129S6/SvEv and C57BL/6 Men1+/- mice revealed >54,000 different variants in >300 genes. These included, Coq7, Dmpk, Ccne2, Kras, Wnt2b, Il3ra and Tnfrsf10a, and qRT-PCR analysis revealed that Kras was significantly higher in pituitaries of male 129S6/SvEv mice. Thus, our results demonstrate that Kras and other genes could represent possible genetic modifiers of Men1

    Antibodies to the Mr 64,000 (64K) protein in islet cell antibody positive non-diabetic individuals indicate high risk for impaired Beta-cell function

    Get PDF
    A prospective study of a normal childhood population identified 44 islet cell antibody positive individuals. These subjects were typed for HLA DR and DQ alleles and investigated for the presence of antibodies to the Mr 64,000 (64K) islet cell antigen, complement-fixing islet cell antibodies and radiobinding insulin autoantibodies to determine their potency in detecting subjects with impaired Beta-cell function. At initial testing 64K antibodies were found in six of 44 islet cell antibody positive subjects (13.6%). The same sera were also positive for complement-fixing islet cell antibodies and five of them had insulin autoantibodies. During the follow-up at 18 months, islet cell antibodies remained detectable in 50% of the subjects studied. In all six cases who were originally positive, 64K antibodies were persistently detectable, whereas complement-fixing islet cell antibodies became negative in two of six and insulin autoantibodies in one of five individuals. HLA DR4 (p < 0.005) and absence of asparic acid (Asp) at position 57 of the HLA DQ chain (p < 0.05) were significantly increased in subjects with 64K antibodies compared with control subjects. Of 40 individuals tested in the intravenous glucose tolerance test, three had a first phase insulin response below the first percentile of normal control subjects. Two children developed Type 1 (insulin-dependent) diabetes mellitus after 18 and 26 months, respectively. Each of these subjects was non-Asp homozygous and had persistent islet cell and 64K antibodies. We conclude that 64K antibodies, complement-fixing islet cell antibodies and insulin autoantibodies represent sensitive serological markers in assessing high risk for a progression to Type 1 diabetes in islet cell antibody positive non-diabetic individuals

    Differences in the signaling pathways of α1A- and α1B-adrenoceptors are related to different endosomal targeting

    Get PDF
    Aims: To compare the constitutive and agonist-dependent endosomal trafficking of α1A- and α1B-adrenoceptors (ARs) and to establish if the internalization pattern determines the signaling pathways of each subtype. Methods: Using CypHer5 technology and VSV-G epitope tagged α1A- and α1B-ARs stably and transiently expressed in HEK 293 cells, we analyzed by confocal microscopy the constitutive and agonist-induced internalization of each subtype, and the temporal relationship between agonist induced internalization and the increase in intracellular calcium (determined by FLUO-3 flouorescence), or the phosphorylation of ERK1/2 and p38 MAP kinases (determined by Western blot). Results and Conclusions: Constitutive as well as agonist-induced trafficking of α1A and α1B ARs maintain two different endosomal pools of receptors: one located close to the plasma membrane and the other deeper into the cytosol. Each subtype exhibited specific characteristics of internalization and distribution between these pools that determines their signaling pathways: α1A-ARs, when located in the plasma membrane, signal through calcium and ERK1/2 pathways but, when translocated to deeper endosomes, through a mechanism sensitive to β-arrestin and concanavalin A, continue signaling through ERK1/2 and also activate the p38 pathway. α1B-ARs signal through calcium and ERK1/2 only when located in the membrane and the signals disappear after endocytosis and by disruption of the membrane lipid rafts by methyl-β-cyclodextrin

    Chaste: an open source C++ library for computational physiology and biology

    Get PDF
    Chaste - Cancer, Heart And Soft Tissue Environment - is an open source C++ library for the computational simulation of mathematical models developed for physiology and biology. Code development has been driven by two initial applications: cardiac electrophysiology and cancer development. A large number of cardiac electrophysiology studies have been enabled and performed, including high performance computational investigations of defibrillation on realistic human cardiac geometries. New models for the initiation and growth of tumours have been developed. In particular, cell-based simulations have provided novel insight into the role of stem cells in the colorectal crypt. Chaste is constantly evolving and is now being applied to a far wider range of problems. The code provides modules for handling common scientific computing components, such as meshes and solvers for ordinary and partial differential equations (ODEs/PDEs). Re-use of these components avoids the need for researchers to "re-invent the wheel" with each new project, accelerating the rate of progress in new applications. Chaste is developed using industrially-derived techniques, in particular test-driven development, to ensure code quality, re-use and reliability. In this article we provide examples that illustrate the types of problems Chaste can be used to solve, which can be run on a desktop computer. We highlight some scientific studies that have used or are using Chaste, and the insights they have provided. The source code, both for specific releases and the development version, is available to download under an open source Berkeley Software Distribution (BSD) licence at http://www.cs.ox.ac.uk/chaste, together with details of a mailing list and links to documentation and tutorials

    A rare combination of an endocrine tumour of the common bile duct and a follicular lymphoma of the ampulla of Vater: a case report and review of the literature

    Get PDF
    Carcinoid tumours of the common bile duct represent an extremely rare entity. Similarly, primary follicular lymphomas of the ampulla of Vater constitute an infrequent neoplasia. Herein, we report the first case of a synchronous development of a carcinoid tumour of the common bile duct and an ampullary follicular lymphoma that was treated surgically with a Whipple's procedure, due to inability to establish definitive preoperative diagnosis despite the extensive diagnostic investigation

    Advanced optical imaging in living embryos

    Get PDF
    Developmental biology investigations have evolved from static studies of embryo anatomy and into dynamic studies of the genetic and cellular mechanisms responsible for shaping the embryo anatomy. With the advancement of fluorescent protein fusions, the ability to visualize and comprehend how thousands to millions of cells interact with one another to form tissues and organs in three dimensions (xyz) over time (t) is just beginning to be realized and exploited. In this review, we explore recent advances utilizing confocal and multi-photon time-lapse microscopy to capture gene expression, cell behavior, and embryo development. From choosing the appropriate fluorophore, to labeling strategy, to experimental set-up, and data pipeline handling, this review covers the various aspects related to acquiring and analyzing multi-dimensional data sets. These innovative techniques in multi-dimensional imaging and analysis can be applied across a number of fields in time and space including protein dynamics to cell biology to morphogenesis

    Generation of polyclonal antibody with high avidity to rosuvastatin and its use in development of highly sensitive ELISA for determination of rosuvastatin in plasma

    Get PDF
    In this study, a polyclonal antibody with high avidity and specificity to the potent hypocholesterolaemic agent rosuvastatin (ROS) has been prepared and used in the development of highly sensitive enzyme-linked immunosorbent assay (ELISA) for determination of ROS in plasma. ROS was coupled to keyhole limpt hemocyanin (KLH) and bovine serum albumin (BSA) using carbodiimide reagent. ROS-KLH conjugate was used for immunization of female 8-weeks old New Zealand white rabbits. The immune response of the rabbits was monitored by direct ELISA using ROS-BSA immobilized onto microwell plates as a solid phase. The rabbit that showed the highest antibody titer and avidity to ROS was scarified and its sera were collected. The IgG fraction was isolated and purified by avidity chromatography on protein A column. The purified antibody showed high avidity to ROS; IC50 = 0.4 ng/ml. The specificity of the antibody for ROS was evaluated by indirect ELISA using various competitors from the ROS-structural analogues and the therapeutic agents used with ROS in a combination therapy. The proposed ELISA involved a competitive binding reaction between ROS, in plasma sample, and the immobilized ROS-BSA for the binding sites on a limited amount of the anti-ROS antibody. The bound anti-ROS antibody was quantified with horseradish peroxidase-labeled second anti-rabbit IgG antibody (HRP-IgG) and 3,3',5,5'-tetramethylbenzidine (TMB) as a substrate for the peroxidase enzyme. The concentration of ROS in the sample was quantified by its ability to inhibit the binding of the anti-ROS antibody to the immobilized ROS-BSA and subsequently the color intensity in the assay wells. The assay enabled the determination of ROS in plasma at concentrations as low as 40 pg/ml

    Extracellular VirB5 Enhances T-DNA Transfer from Agrobacterium to the Host Plant

    Get PDF
    VirB5 is a type 4 secretion system protein of Agrobacterium located on the surface of the bacterial cell. This localization pattern suggests a function for VirB5 which is beyond its known role in biogenesis and/or stabilization of the T-pilus and which may involve early interactions between Agrobacterium and the host cell. Here, we identify VirB5 as the first Agrobacterium virulence protein that can enhance infectivity extracellularly. Specifically, we show that elevating the amounts of the extracellular VirB5—by exogenous addition of the purified protein, its overexpression in the bacterium, or transgenic expression in and secretion out of the host cell—enhances the efficiency the Agrobacterium-mediated T-DNA transfer, as measured by transient expression of genes contained on the transferred T-DNA molecule. Importantly, the exogenous VirB5 enhanced transient T-DNA expression in sugar beet, a major crop recalcitrant to genetic manipulation. Increasing the pool of the extracellular VirB5 did not complement an Agrobacterium virB5 mutant, suggesting a dual function for VirB5: in the bacterium and at the bacterium-host cell interface. Consistent with this idea, VirB5 expressed in the host cell, but not secreted, had no effect on the transformation efficiency. That the increase in T-DNA expression promoted by the exogenous VirB5 was not due to its effects on bacterial growth, virulence gene induction, bacterial attachment to plant tissue, or host cell defense response suggests that VirB5 participates in the early steps of the T-DNA transfer to the plant cell

    Carcinoma Arising from Brunner's Gland in the Duodenum after 17 Years of Observation – A Case Report and Literature Review

    Get PDF
    A 60-year-old man presented with melena and hematemesis in 1984. Esophagogastroduodenoscopy (EGD) detected a small protruding lesion in the duodenal bulb, which was diagnosed as Brunner's adenoma. No significant change was detected in subsequent annual EGD and biopsies for 10 years, after which the patient was not observed for 7 years. The patient presented with melena again in 2001. The lesion had changed shape to become a 10 mm sessile tumor with a central depression, and following a biopsy was diagnosed as an adenocarcinoma. The patient underwent partial resection of the duodenum. Histopathological assessment showed acidophilic cells with swollen nuclei, and clear cells forming a tubular or papillary tubule in the mucosal lamina propria and submucosal layer. The tumor cells stained positive for lysozyme, indicating that they arose from Brunner's gland. The patient showed no sign of recurrence and was disease-free for more than 34 months after surgery. The patient died of pneumonia. This is an extremely rare case of primary duodenal carcinoma arising from Brunner's gland in a patient observed for 17 years

    Analytic philosophy for biomedical research: the imperative of applying yesterday's timeless messages to today's impasses

    Get PDF
    The mantra that "the best way to predict the future is to invent it" (attributed to the computer scientist Alan Kay) exemplifies some of the expectations from the technical and innovative sides of biomedical research at present. However, for technical advancements to make real impacts both on patient health and genuine scientific understanding, quite a number of lingering challenges facing the entire spectrum from protein biology all the way to randomized controlled trials should start to be overcome. The proposal in this chapter is that philosophy is essential in this process. By reviewing select examples from the history of science and philosophy, disciplines which were indistinguishable until the mid-nineteenth century, I argue that progress toward the many impasses in biomedicine can be achieved by emphasizing theoretical work (in the true sense of the word 'theory') as a vital foundation for experimental biology. Furthermore, a philosophical biology program that could provide a framework for theoretical investigations is outlined
    corecore