7,322 research outputs found

    Exploring views on satisfaction with life in young children with chronic illness: an innovative approach to the collection of self-report data from children under 11

    Get PDF
    The objective of this study was to explore young children’s views on the impact of chronic illness on their life in order to inform future development of a patient-based self-report health outcome measure. We describe an approach to facilitating self-report views from young children with chronic illness. A board game was designed in order to obtain qualitative data from 39 children with a range of chronic illness conditions and 38 healthy controls ranging in age from 3 to 11 years. The format was effective in engaging young children in a self-report process of determining satisfaction with life and identified nine domains. The board game enabled children aged 5–11 years with chronic illness to describe the effects of living with illness on home, family, friends, school and life in general. It generated direct, non-interpreted material from children who, because of their age, may have been considered unable or limited their ability to discuss and describe how they feel. Obtaining this information for children aged 4 and under continues to be a challenge

    Impact of SST and surface waves on Hurricane Florence (2018): a coupled modeling investigation

    Get PDF
    Author Posting. © American Meteorological Society , 2021. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Zambon, J. B., He, R., Warner, J. C., & Hegermiller, C. A. Impact of SST and surface waves on Hurricane Florence (2018): a coupled modeling investigation. Weather and Forecasting, 36(5), (2021): 1713–1734, https://doi.org/10.1175/WAF-D-20-0171.1.Hurricane Florence (2018) devastated the coastal communities of the Carolinas through heavy rainfall that resulted in massive flooding. Florence was characterized by an abrupt reduction in intensity (Saffir–Simpson category 4 to category 1) just prior to landfall and synoptic-scale interactions that stalled the storm over the Carolinas for several days. We conducted a series of numerical modeling experiments in coupled and uncoupled configurations to examine the impact of sea surface temperature (SST) and ocean waves on storm characteristics. In addition to experiments using a fully coupled atmosphere–ocean–wave model, we introduced the capability of the atmospheric model to modulate wind stress and surface fluxes by ocean waves through data from an uncoupled wave model. We examined these experiments by comparing track, intensity, strength, SST, storm structure, wave height, surface roughness, heat fluxes, and precipitation in order to determine the impacts of resolving ocean conditions with varying degrees of coupling. We found differences in the storm’s intensity and strength, with the best correlation coefficient of intensity (r = 0.89) and strength (r = 0.95) coming from the fully coupled simulations. Further analysis into surface roughness parameterizations added to the atmospheric model revealed differences in the spatial distribution and magnitude of the largest roughness lengths. Adding ocean and wave features to the model further modified the fluxes due to more realistic cooling beneath the storm, which in turn modified the precipitation field. Our experiments highlight significant differences in how air–sea processes impact hurricane modeling. The storm characteristics of track, intensity, strength, and precipitation at landfall are crucial to predictability and forecasting of future landfalling hurricanes.This work has been supported by the U.S. Geological Survey Coastal/Marine Hazards and Resources Program, and by Congressional appropriations through the Additional Supplemental Appropriations for Disaster Relief Act of 2019 (H.R. 2157). The authors also wish to acknowledge research support through NSF Grant OCE-1559178 and NOAA Grant NA16NOS0120028. We also wish to thank Chris Sherwood from the U.S. Geological Survey for his help in deriving wave length from WAVEWATCH III data

    Non-contrast renal magnetic resonance imaging to assess perfusion and corticomedullary differentiation in health and chronic kidney disease

    Get PDF
    AIMS Arterial spin labelling (ASL) MRI measures perfusion without administration of contrast agent. While ASL has been validated in animals and healthy volunteers (HVs), application to chronic kidney disease (CKD) has been limited. We investigated the utility of ASL MRI in patients with CKD. METHODS We studied renal perfusion in 24 HVs and 17 patients with CKD (age 22-77 years, 40% male) using ASL MRI at 3.0T. Kidney function was determined using estimated glomerular filtration rate (eGFR). T1 relaxation time was measured using modified look-locker inversion and xFB02;ow-sensitive alternating inversion recovery true-fast imaging and steady precession was performed to measure cortical and whole kidney perfusion. RESULTS T1 was higher in CKD within cortex and whole kidney, and there was association between T1 time and eGFR. No association was seen between kidney size and volume and either T1, or ASL perfusion. Perfusion was lower in CKD in cortex (136 ± 37 vs. 279 ± 69 ml/min/100 g; p < 0.001) and whole kidney (146 ± 24 vs. 221 ± 38 ml/min/100 g; p < 0.001). There was significant, negative, association between T1 longitudinal relaxation time and ASL perfusion in both the cortex (r = -0.75, p < 0.001) and whole kidney (r = -0.50, p < 0.001). There was correlation between eGFR and both cortical (r = 0.73, p < 0.01) and whole kidney (r = 0.69, p < 0.01) perfusion. CONCLUSIONS Significant differences in renal structure and function were demonstrated using ASL MRI. T1 may be representative of structural changes associated with CKD; however, further investigation is required into the pathological correlates of reduced ASL perfusion and increased T1 time in CKD

    Transverse phase space characterization in an accelerator test facility

    Get PDF
    We compare three techniques for characterising the transverse phase space distribution of the beam in CLARA FE (the Compact Linear Accelerator for Research and Applications Front End, at Daresbury Laboratory, UK): emittance and optics measurements using screens at three separate beamline locations; quadrupole scans; and phase space tomography. We find that where the beam distribution has significant structure (as in the case of CLARA FE at the time the measurements presented here were made) tomography analysis is the most reliable way to obtain a meaningful characterisation of the transverse beam properties. We present the first experimental results from four-dimensional phase space tomography: our results show that this technique can provide an insight into beam properties that are of importance for optimising machine performance

    Late Miocene to early Pliocene biofacies of Wanganui and Taranaki Basins, New Zealand: Applications to paleoenvironmental and sequence stratigraphic analysis

    Get PDF
    The Matemateaonga Formation is late Miocene to early Pliocene (upper Tongaporutuan to lower Opoitian New Zealand Stages) in age. The formation comprises chiefly shellbeds, siliciclastic sandstone, and siltstone units and to a lesser extent non-marine and shallow marine conglomerate and rare paralic facies. The Matemateaonga Formation accumulated chiefly in shelf paleoenvironments during basement onlap and progradation of a late Miocene to early Pliocene continental margin wedge in the Wanganui and Taranaki Basins. The formation is strongly cyclothemic, being characterised by recurrent vertically stacked facies successions, bounded by sequence boundaries. These facies accumulated in a range of shoreface to mid-outer shelf paleoenvironments during conditions of successively oscillating sea level. This sequential repetition of facies and the biofacies they enclose are the result of sixth-order glacio-eustatic cyclicity. Macrofaunal associations have been identified from statistical analysis of macrofossil occurrences collected from multiple sequences. Each association is restricted to particular lithofacies and stratal positions and shows a consistent order and/or position within the sequences. This pattern of temporal paleoecologic change appears to be the result of lateral, facies-related shifting of broad biofacies belts, or habitat-tracking, in response to fluctuations of relative sea level, sediment flux, and other associated paleoenvironmental variables. The associations also show strong similarity in terms of their generic composition to biofacies identified in younger sedimentary strata and the modern marine benthic environment in New Zealand

    Fragile topology in line-graph lattices with two, three, or four gapped flat bands

    Full text link
    The geometric properties of a lattice can have profound consequences on its band spectrum. For example, symmetry constraints and geometric frustration can give rise to topologicially nontrivial and dispersionless bands, respectively. Line-graph lattices are a perfect example of both of these features: their lowest energy bands are perfectly flat, and here we develop a formalism to connect some of their geometric properties with the presence or absence of fragile topology in their flat bands. This theoretical work will enable experimental studies of fragile topology in several types of line-graph lattices, most naturally suited to superconducting circuits.Comment: 8+25 pages, 3+19 figures, 2+3 table

    Traumatic injury survivors’ perceptions of their future: a longitudinal qualitative study

    Get PDF
    AIM: Persistent disability following traumatic injuries can disrupt future plans and create uncertainty about how to mitigate future impacts. It is unknown how or whether perceptions of the future change in the years after injury. Therefore, the aim of this study was to explore trauma survivors’ perceptions of their future over time. METHODS: A longitudinal qualitative study, nested within a population-based longitudinal cohort study, was undertaken in Victoria, Australia with survivors of serious injury. Sixty-six seriously injured adults (≄16 years) without severe neurotrauma were interviewed at 3 years post-injury (n = 66), and re-interviewed at 4 (n = 63) and 5 years (n = 57) post-injury. A longitudinal thematic analysis was performed. RESULTS: Many traumatically injured people had persistent physical and mental impacts. Participants reported being anxious about pain, mobility, work, housing and accommodation, social activities, and finances in their future. Others were hopeful and optimistic regarding their future and developed coping strategies and adopted new viewpoints. CONCLUSION: ver time, most seriously injured people’s perceptions of the future remained consistent. Some had enduring anxiety and others sustained hopeful approaches. Personalised and targeted interventions that address specific concerns could reduce anxiety and support positive adjustment following traumatic injury
    • 

    corecore