19 research outputs found

    Modelling Anopheles gambiae s.s. Population Dynamics with Temperature- and Age-Dependent Survival

    Get PDF
    Climate change and global warming are emerging as important threats to human health, particularly through the potential increase in vector- and water-borne diseases. Environmental variables are known to affect substantially the population dynamics and abundance of the poikilothermic vectors of disease, but the exact extent of this sensitivity is not well established. Focusing on malaria and its main vector in Africa, Anopheles gambiae sensu stricto, we present a set of novel mathematical models of climate-driven mosquito population dynamics motivated by experimental data suggesting that in An. gambiae, mortality is temperature and age dependent. We compared the performance of these models to that of a “standard” model ignoring age dependence. We used a longitudinal dataset of vector abundance over 36 months in sub-Saharan Africa for comparison between models that incorporate age dependence and one that does not, and observe that age-dependent models consistently fitted the data better than the reference model. This highlights that including age dependence in the vector component of mosquito-borne disease models may be important to predict more reliably disease transmission dynamics. Further data and studies are needed to enable improved fitting, leading to more accurate and informative model predictions for the An. gambiae malaria vector as well as for other disease vectors

    Temperature during larval development and adult maintenance influences the survival of Anopheles gambiae s.s.

    Get PDF
    BACKGROUND: Malaria transmission depends on vector life-history parameters and population dynamics, and particularly on the survival of adult Anopheles mosquitoes. These dynamics are sensitive to climatic and environmental factors, and temperature is a particularly important driver. Data currently exist on the influence of constant and fluctuating adult environmental temperature on adult Anopheles gambiae s.s. survival and on the effect of larval environmental temperature on larval survival, but none on how larval temperature affects adult life-history parameters. METHODS: Mosquito larvae and pupae were reared individually at different temperatures (23 ± 1°C, 27 ± 1°C, 31 ± 1°C, and 35 ± 1°C), 75 ± 5% relative humidity. Upon emergence into imagoes, individual adult females were either left at their larval temperature or placed at a different temperature within the range above. Survival was monitored every 24 hours and data were analysed using non-parametric and parametric methods. The Gompertz distribution fitted the survivorship data better than the gamma, Weibull, and exponential distributions overall and was adopted to describe mosquito mortality rates. RESULTS: Increasing environmental temperature during the larval stages decreased larval survival (p < 0.001). Increases of 4°C (from 23°C to 27°C, 27°C to 31°C, and 31°C to 35°C), 8°C (27°C to 35°C) and 12°C (23°C to 35°C) statistically significantly increased larval mortality (p < 0.001). Higher environmental temperature during the adult stages significantly lowered adult survival overall (p < 0.001), with increases of 4°C and 8°C significantly influencing survival (p < 0.001). Increasing the larval environment temperature also significantly increased adult mortality overall (p < 0.001): a 4°C increase (23°C to 27°C) did not significantly affect adult survival (p > 0.05), but an 8°C increase did (p < 0.05). The effect of a 4°C increase in larval temperature from 27°C to 31°C depended on the adult environmental temperature. The data also suggest that differences between the temperatures of the larval and adult environments affects adult mosquito survival. CONCLUSIONS: Environmental temperature affects Anopheles survival directly during the juvenile and adult stages, and indirectly, since temperature during larval development significantly influences adult survival. These results will help to parameterise more reliable mathematical models investigating the potential impact of temperature and global warming on malaria transmission. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13071-014-0489-3) contains supplementary material, which is available to authorized users

    Manipulating the Mosquito Microbiota to Study Its Function

    No full text
    Date de fin d'embargo : le 28 janvier 2021International audienceAedes aegypti mosquitoes are the main vectors of several arboviruses and are commonly used as models in mosquito biology and vector competence studies. The mosquito microbiota has an impact on different aspects of host physiology, including development, immunity, and fecundity, in turn influencing the capability of the mosquito to transmit diseases. The composition of the microbiota is relatively simple in field mosquitoes, and many of its bacterial members are culturable in the laboratory. Being able to manipulate the composition of the mosquito microbiota is essential to effectively investigate its effect on host physiology and vector competence. This protocol describes how to obtain gnotobiotic mosquitoes, i.e., mosquitoes with a known microbiota composition, and how to monitor the effect of a manipulated microbiota on mosquito development

    Solute carriers affect Anopheles stephensi survival and Plasmodium berghei infection in the salivary glands

    No full text
    Malaria is caused by mosquito-borne Plasmodium spp. parasites that must infect and survive within mosquito salivary glands (SGs) prior to host transmission. Recent advances in transcriptomics and the complete genome sequencing of mosquito vectors have increased our knowledge of the SG genes and proteins involved in pathogen infection and transmission. Membrane solute carriers are key proteins involved in drug transport and are useful in the development of new interventions for transmission blocking. Herein, we applied transcriptomics analysis to compare SGs mRNA levels in Anopheles stephensi fed on non-infected and P. berghei-infected mice. The A. stephensi solute carriers prestinA and NDAE1 were up-regulated in response to infection. These molecules are predicted to interact with each other, and are reportedly involved in the maintenance of cell homeostasis. To further evaluate their functions in mosquito survival and parasite infection, these genes were knocked down by RNA interference. Knockdown of prestinA and NDAE1 resulted in reduction of the number of sporozoites in mosquito SGs. Moreover, NDAE1 knockdown strongly impacted mosquito survival, resulting in the death of half of the treated mosquitoes. Overall, our findings indicate the importance of prestinA and NDAE1 in interactions between mosquito SGs and Plasmodium, and suggest the need for further research.publishersversionpublishe
    corecore