7,351 research outputs found
Discovery of the spectroscopic binary nature of three bright southern Cepheids
We present an analysis of spectroscopic radial velocity and photometric data
of three bright Galactic Cepheids: LR Trianguli Australis (LR TrA), RZ Velorum
(RZ Vel), and BG Velorum (BG Vel). Based on new radial velocity data, these
Cepheids have been found to be members of spectroscopic binary systems.
The ratio of the peak-to-peak radial velocity amplitude to photometric
amplitude indicates the presence of a companion for LR TrA and BG Vel. IUE
spectra indicate that the companions of RZ Vel and BG Vel cannot be hot stars.
The analysis of all available photometric data revealed that the pulsation
period of RZ Vel and BG Vel varies monotonically, due to stellar evolution.
Moreover, the longest period Cepheid in this sample, RZ Vel, shows period
fluctuations superimposed on the monotonic period increase. The light-time
effect interpretation of the observed pattern needs long-term photometric
monitoring of this Cepheid. The pulsation period of LR TrA has remained
constant since the discovery of its brightness variation.
Using statistical data, it is also shown that a large number of spectroscopic
binaries still remain to be discovered among bright classical Cepheids.Comment: 9 pages, 14 figure
Discovery of the spectroscopic binary nature of six southern Cepheids
We present the analysis of photometric and spectroscopic data of six bright
Galactic Cepheids: GH Carinae, V419 Centauri, V898 Centauri, AD Puppis, AY
Sagittarii, and ST Velorum. Based on new radial velocity data (in some cases
supplemented with earlier data available in the literature), these Cepheids
have been found to be members in spectroscopic binary systems. V898 Cen turned
out to have one of the largest orbital radial velocity amplitude (> 40 km/s)
among the known binary Cepheids. The data are insufficient to determine the
orbital periods nor other orbital elements for these new spectroscopic
binaries.
These discoveries corroborate the statement on the high frequency of
occurrence of binaries among the classical Cepheids, a fact to be taken into
account when calibrating the period-luminosity relationship for Cepheids.
We have also compiled all available photometric data that revealed that the
pulsation period of AD Pup, the longest period Cepheid in this sample, is
continuously increasing with Delta P = 0.004567 d/century, likely to be caused
by stellar evolution. The wave-like pattern superimposed on the parabolic O-C
graph of AD Pup may well be caused by the light-time effect in the binary
system. ST Vel also pulsates with a continuously increasing period. The other
four Cepheids are characterised with stable pulsation periods in the last half
century.Comment: accepted by the MNRAS, 11 pages, 16 figures, 18 tables, a part of the
data can be downloaded from the online version of this articl
Color singlet suppression of quark-gluon plasma formation
The rate of quark-gluon plasma droplet nucleation in superheated hadronic
matter is calculated within the MIT bag model. The requirements of color
singletness and (to less extent) fixed momentum suppress the nucleation rate by
many orders of magnitude, making thermal nucleation of quark-gluon plasma
droplets unlikely in ultrarelativistic heavy-ion collisions if the transition
is first order and reasonably described by the bag model.Comment: 9 pages, 3 ps figures. To appear in PhysRevC (April 1996
Ultra Precise Modular Reaction Wheel Operation for Optical and Radar Satellites
With the new space arena evolving towards serious science and defense missions, the availability of new space avionics with high-end performance is becoming a prerequisite for modern and future satellite missions.
This puts requirements for very accurate speed and torque control of modern reaction wheels used to perform attitude control of modern spacecraft. Nearly vibration free operation (optical payloads) Extremely trum of frequencies Modularity Fast delivery Scalabilit
Extended Emission Line Gas in Radio Galaxies - PKS0349-27
PKS0349-27 is a classical FRII radio galaxy with an AGN host which has a
spectacular, spiral-like structure in its extended emission line gas (EELG). We
have measured the velocity field in this gas and find that it splits into 2
cloud groups separated by radial velocities which at some points approach 400
km/s Measurements of the diagnostic emission line ratios [OIII]5007/H-beta,
[SII]6716+6731/H-alpha, and [NII]6583/H-alpha in these clouds show no evidence
for the type of HII region emission associated with starburst activity in
either velocity system. The measured emission line ratios are similar to those
found in the nuclei of narrow-line radio galaxies, but the extended
ionization/excitation cannot be produced by continuum emission from the active
nucleus alone. We present arguments which suggest that the velocity
disturbances seen in the EELG are most likely the result of a galaxy-galaxy
collision or merger but cannot completely rule out the possibility that the gas
has been disrupted by the passage of a radio jet.Comment: 12 pages, 3 fig pages, to appear in the Astrophys.
Review of biorthogonal coupled cluster representations for electronic excitation
Single reference coupled-cluster (CC) methods for electronic excitation are
based on a biorthogonal representation (bCC) of the (shifted) Hamiltonian in
terms of excited CC states, also referred to as correlated excited (CE) states,
and an associated set of states biorthogonal to the CE states, the latter being
essentially configuration interaction (CI) configurations. The bCC
representation generates a non-hermitian secular matrix, the eigenvalues
representing excitation energies, while the corresponding spectral intensities
are to be derived from both the left and right eigenvectors. Using the
perspective of the bCC representation, a systematic and comprehensive analysis
of the excited-state CC methods is given, extending and generalizing previous
such studies. Here, the essential topics are the truncation error
characteristics and the separability properties, the latter being crucial for
designing size-consistent approximation schemes. Based on the general order
relations for the bCC secular matrix and the (left and right) eigenvector
matrices, formulas for the perturbation-theoretical (PT) order of the
truncation errors (TEO) are derived for energies, transition moments, and
property matrix elements of arbitrary excitation classes and truncation levels.
In the analysis of the separability properties of the transition moments, the
decisive role of the so-called dual ground state is revealed. Due to the use of
CE states the bCC approach can be compared to so-called intermediate state
representation (ISR) methods based exclusively on suitably orthonormalized CE
states. As the present analysis shows, the bCC approach has decisive advantages
over the conventional CI treatment, but also distinctly weaker TEO and
separability properties in comparison with a full (and hermitian) ISR method
New boundary conditions for integrable lattices
New boundary conditions for integrable nonlinear lattices of the XXX type,
such as the Heisenberg chain and the Toda lattice are presented. These
integrable extensions are formulated in terms of a generic XXX Heisenberg
magnet interacting with two additional spins at each end of the chain. The
construction uses the most general rank 1 ansatz for the 2x2 L-operator
satisfying the reflection equation algebra with rational r-matrix. The
associated quadratic algebra is shown to be the one of dynamical symmetry for
the A1 and BC2 Calogero-Moser problems. Other physical realizations of our
quadratic algebra are also considered.Comment: 22 pages, latex, no figure
- …