New boundary conditions for integrable nonlinear lattices of the XXX type,
such as the Heisenberg chain and the Toda lattice are presented. These
integrable extensions are formulated in terms of a generic XXX Heisenberg
magnet interacting with two additional spins at each end of the chain. The
construction uses the most general rank 1 ansatz for the 2x2 L-operator
satisfying the reflection equation algebra with rational r-matrix. The
associated quadratic algebra is shown to be the one of dynamical symmetry for
the A1 and BC2 Calogero-Moser problems. Other physical realizations of our
quadratic algebra are also considered.Comment: 22 pages, latex, no figure