13,668 research outputs found
Shield sizing and response equations
A consolidated list is presented of meteoroid debris shield equations which have been given in the referenced memorandums. In some cases, equations have been updated; thus, this memorandum supersedes reference 1. The equations are presented in two parts: (1) shield sizing equations which are used to produce preliminary estimates of shielding weights; and (2) response equations to describe the impact conditions (projectile size as a function of velocity, density, and impact angle) causing failure of a given shield that are to be used for probability analyses (such as in the modified BUMPER program). Specific equations are given that are applicable for the following types of shields: aluminum Whipple shields; Nextel multishock (MS) shields; and mesh double bumper (MDB) shields. These equations will be updated in the future as warranted by the results of additional HVI tests, analyses, and shield modeling
Turbulent Disks are Never Stable: Fragmentation and Turbulence-Promoted Planet Formation
A fundamental assumption in our understanding of disks is that when the
Toomre Q>>1, the disk is stable against fragmentation into self-gravitating
objects (and so cannot form planets via direct collapse). But if disks are
turbulent, this neglects a spectrum of stochastic density fluctuations that can
produce rare, high-density mass concentrations. Here, we use a
recently-developed analytic framework to predict the statistics of these
fluctuations, i.e. the rate of fragmentation and mass spectrum of fragments
formed in a turbulent Keplerian disk. Turbulent disks are never completely
stable: we calculate the (always finite) probability of forming
self-gravitating structures via stochastic turbulent density fluctuations in
such disks. Modest sub-sonic turbulence above Mach number ~0.1 can produce a
few stochastic fragmentation or 'direct collapse' events over ~Myr timescales,
even if Q>>1 and cooling is slow (t_cool>>t_orbit). In trans-sonic turbulence
this extends to Q~100. We derive the true Q-criterion needed to suppress such
events, which scales exponentially with Mach number. We specify to turbulence
driven by MRI, convection, or spiral waves, and derive equivalent criteria in
terms of Q and the cooling time. Cooling times >~50*t_dyn may be required to
completely suppress fragmentation. These gravoturbulent events produce mass
spectra peaked near ~M_disk*(Q*M_disk/M_star)^2 (rocky-to-giant planet masses,
increasing with distance from the star). We apply this to protoplanetary disk
models and show that even minimum mass solar nebulae could experience
stochastic collapse events, provided a source of turbulence.Comment: 15 pages, 5 figures (+appendix), accepted to ApJ (added
clarifications and discussion to match accepted version
Heat-Cleaned Nextel in MMOD Shielding
Meteoroid and orbital debris (MMOD) shielding can include NextelTM ceramic cloth in the outer layers of the shielding to enhance MMOD breakup. The Nextel fabric can contain size (or sizing) which aids in manufacture of the fabric. Sizing is a starch, oil or waxy material that is added to the rovings and yarns to protect the fibers from being cut or broken during the fabric manufacturing process and by later handling. For spacecraft applications, sizing is removed by heat-cleaning to reduce/eliminate off-gassing during vacuum operations. After the sizing is removed, the fibers in the woven fabric are prone to breakage during handling which reduces fabric strength. Because heat-cleaned Nextel tends to shed fibers that can be irritating to workers, the usual practice for hypervelocity impact tests is to use Nextel with sizing. The reduced strength of heat-cleaned Nextel does not typically effect the performance of MMOD shields with Nextel used in outer layers of the shield, because the density and areal density of the ceramic fibers in the fabric control MMOD breakup (not fabric strength). This paper provides data demonstrating that hypervelocity impact protection performance is not adversely altered for shields containing heat-cleaned Nextel compared to Nextel with sizing
On protection of Freedom's solar dynamic radiator from the orbital debris environment. Part 2: Further testing and analyses
Presented here are results of a test program undertaken to further define the response of the solar dynamic radiator to hypervelocity impact (HVI). Tests were conducted on representative radiator panels (under ambient, nonoperating conditions) over a range of velocity. Target parameters are also varied. Data indicate that analytical penetration predictions are conservative (i.e., pessimistic) for the specific configuration of the solar dynamic radiator. Test results are used to define the solar dynamic radiator reliability with respect to HVI more rigorously than previous studies. Test data, reliability, and survivability results are presented
On protection of Freedom's solar dynamic radiator from the orbital debris environment. Part 1: Preliminary analyses and testing
A great deal of experimentation and analysis was performed to quantify penetration thresholds of components which will experience orbital debris impacts. Penetration was found to depend upon mission specific parameters such as orbital altitude, inclination, and orientation of the component; and upon component specific parameters such as material, density and the geometry particular to its shielding. Experimental results are highly dependent upon shield configuration and cannot be extrapolated with confidence to alternate shield configurations. Also, current experimental capabilities are limited to velocities which only approach the lower limit of predicted orbital debris velocities. Therefore, prediction of the penetrating particle size for a particular component having a complex geometry remains highly uncertain. An approach is described which was developed to assess on-orbit survivability of the solar dynamic radiator due to micrometeoroid and space debris impacts. Preliminary analyses are presented to quantify the solar dynamic radiator survivability, and include the type of particle and particle population expected to defeat the radiator bumpering (i.e., penetrate a fluid flow tube). Results of preliminary hypervelocity impact testing performed on radiator panel samples (in the 6 to 7 km/sec velocity range) are also presented. Plans for further analyses and testing are discussed. These efforts are expected to lead to a radiator design which will perform to requirements over the expected lifetime
An Astronaut's Risk of Experiencing a Critical Impact from Lunar Ejecta During Lunar EVA
The Moon is under constant bombardment by meteoroids. When the meteoroid is large, the impact craters the surface, launching crater ejecta far from the impact potentially threatening astronauts on the lunar surface. In the early 1960s, the ejecta impact flux was thought no more than the sporadic meteoroid flux but with speeds one to two orders of magnitude smaller. However, the Lunar Module designers realized by 1965 that meteoroid bumpers do not perform well at the smaller ejecta impact speeds. Their estimates of the Lunar Module risk of penetration by ejecta were 25 to 50% of the total risk. This was in spite of the exposure time to ejecta being only a third of that to sporadic meteoroids. The standard committee based the 1969 NASA SP-8013 lunar ejecta environment on Zooks 1967 flux analysis and Gault, Shoemaker and Moores 1963 test data for impacts into solid basalt targets. However, Zook noted in his 1967 analysis, that if the lunar surface was composed of soil, that the ejected soil particles would be smaller than ejected basalt fragments and that the ejection speeds would be smaller. Both effects contribute to reducing the risk of a critical failure due to lunar ejecta. The authors revised Zooks analysis to incorporate soil particle size distributions developed from analysis of Apollo lunar soil samples and ejected mass as a function of ejecta speed developed from coupling parameter analyses of soil impact-test data. The authors estimated EVA risk by assuming failure occurs at a critical impact energy. At these impact speeds, this might be true for suit hard and soft goods. However, these speeds are small enough that there may be significant strength effects that require new test data to modify the hypervelocity critical energy failure criterion. With these caveats, Christiansen, Cour-Palais and Freisen list the critical energy of the ISS EMU hard upper torso as 44 J and the helmet and visor as 71 J at hypervelocity. The authors then assumed that the lunar EVA suit fails at 50 J critical energy. This results in a 1,700,000 years mean time to failure using the results of this analysis and a 3,800 years mean time to failure using NASA SP-8013
Discovery of TUG-770: a highly potent free fatty acid receptor 1 (FFA1/GPR40) agonist for treatment of type 2 diabetes
Free fatty acid receptor 1 (FFA1 or GPR40) enhances glucose-stimulated insulin secretion from pancreatic β-cells and currently attracts high interest as a new target for the treatment of type 2 diabetes. We here report the discovery of a highly potent FFA1 agonist with favorable physicochemical and pharmacokinetic properties. The compound efficiently normalizes glucose tolerance in diet-induced obese mice, an effect that is fully sustained after 29 days of chronic dosing
Observations of MMOD Impact Damage to the ISS
This paper describes meteoroid and orbital debris (MMOD) damage observations on the International Space Station (ISS). Several hundred MMOD damage sites on ISS have been documented using imagery taken from ISS windows. MMOD damage sites visible from ISS windows are typically larger approximately 5mm diameter and greater due to the larger viewer-to-surface distance. Closer inspection of these surfaces by astronauts during spacewalks reveals many smaller features that are typically less distinct. Characterization of these features as MMOD or non- MMOD is difficult, but can be partially accomplished by matching physical characteristics of the damage against typical MMOD impact damage observed on ground-based impact tests. Numerous pieces of space-exposed ISS hardware were returned during space shuttle missions. Subsequent ground inspection of this hardware has also contributed to the database of ISS MMOD impact damage. A handful of orbital replacement units (ORUs) from the ISS active thermal control and electrical power subsystems were swapped out and returned during the Space Shuttle program. In addition, a reusable logistics module was deployed on ISS for a total 59.4 days on 11 shuttle missions between 2001 and 2011 and then brought back in the shuttle payload bay. All of this returned hardware was subjected to detailed post-flight inspections for MMOD damage, and a database with over 1,400 impact records has been collected. A description of the largest observed damage features is provided in the paper. In addition, a discussion of significant MMOD impact sites with operational or design aspects is presented. MMOD impact damage to the following ISS modules/subsystems is described: (1) Solar Arrays, (2) US and Russian windows, (3) Extravehicular Activity (EVA) handrails, (4) Radiators, and (5) Russian Functional Cargo Block (FGB) module
Curvature-induced symmetry breaking in nonlinear Schrodinger models
We consider a curved chain of nonlinear oscillators and show that the
interplay of curvature and nonlinearity leads to a symmetry breaking when an
asymmetric stationary state becomes energetically more favorable than a
symmetric stationary state. We show that the energy of localized states
decreases with increasing curvature, i.e. bending is a trap for nonlinear
excitations. A violation of the Vakhitov-Kolokolov stability criterium is found
in the case where the instability is due to the softening of the Peierls
internal mode.Comment: 4 pages (LaTex) with 6 figures (EPS
Lattice stretching bistability and dynamic heterogeneity
A simple one-dimensional lattice model is suggested to describe the
experimentally observed plateau in force-stretching diagrams for some
macromolecules. This chain model involves the nearest-neighbor interaction of a
Morse-like potential (required to have a saturation branch) and an harmonic
second-neighbor coupling. Under an external stretching applied t o the chain
ends, the intersite Morse-like potential results in the appearance of a
double-well potential within each chain monomer, whereas the interaction
between the second neighbors provide s a homogeneous bistable (degenerate)
ground state, at least within a certain part of the chain.
As a result, different conformational changes occur in the chain under the
external forcing. The transition regions between these conformations are
described as topological solitons. With a strong second-neighbor interaction,
the solitons describe the transition between the bistable ground states.
However, the key point of the model is the appearance of a heterogenous
structure, when the second-neighbor coupling is sufficiently weak. In this
case, a part of the chain has short bonds with a single-well potential, whereas
the complementary part admits strongly stretched bonds with a double-well
potential. This case allows us to explain the existence of a plateau in the
force-stretching diagram for DNA and alpha-helix protein. Finally, the soliton
dynamics are studied in detail.Comment: Submitted to Phys. Rev. E, 13 figure
- …