7 research outputs found

    Cocaine-Induced Locomotor Activation Differs Across Inbred Mouse Substrains

    Get PDF
    Cocaine use disorders (CUD) are devastating for affected individuals and impose a significant societal burden, but there are currently no FDA-approved therapies. The development of novel and effective treatments has been hindered by substantial gaps in our knowledge about the etiology of these disorders. The risk for developing a CUD is influenced by genetics, the environment and complex interactions between the two. Identifying specific genes and environmental risk factors that increase CUD risk would provide an avenue for the development of novel treatments. Rodent models of addiction-relevant behaviors have been a valuable tool for studying the genetics of behavioral responses to drugs of abuse. Traditional genetic mapping using genetically and phenotypically divergent inbred mice has been successful in identifying numerous chromosomal regions that influence addiction-relevant behaviors, but these strategies rarely result in identification of the causal gene or genetic variant. To overcome this challenge, reduced complexity crosses (RCC) between closely related inbred mouse strains have been proposed as a method for rapidly identifying and validating functional variants. The RCC approach is dependent on identifying phenotypic differences between substrains. To date, however, the study of addiction-relevant behaviors has been limited to very few sets of substrains, mostly comprising the C57BL/6 lineage. The present study expands upon the current literature to assess cocaine-induced locomotor activation in 20 inbred mouse substrains representing six inbred strain lineages (A/J, BALB/c, FVB/N, C3H/He, DBA/2 and NOD) that were either bred in-house or supplied directly by a commercial vendor. To our knowledge, we are the first to identify significant differences in cocaine-induced locomotor response in several of these inbred substrains. The identification of substrain differences allows for the initiation of RCC populations to more rapidly identify specific genetic variants associated with acute cocaine response. The observation of behavioral profiles that differ between mice generated in-house and those that are vendor-supplied also presents an opportunity to investigate the influence of environmental factors on cocaine-induced locomotor activity

    Citizenship status and career self-efficacy: An intersectional study of biomedical trainees in the United States

    No full text
    Abstract: This study examines the intersectional role of citizenship and gender with career self-efficacy amongst 10,803 doctoral and postdoctoral trainees in US universities. These biomedical trainees completed surveys administered by 17 US institutions that participated in the National Institutes of Health Broadening Experiences in Scientific Training (NIH BEST) Programs. Findings indicate that career self-efficacy of non-citizen trainees is significantly lower than that of US citizen trainees. While lower career efficacy was observed in women compared with men, it was even lower for non-citizen female trainees. Results suggest that specific career interests may be related to career self-efficacy. Relative to US citizen trainees, both male and female non-citizen trainees showed higher interest in pursuing a career as an academic research investigator. In comparison with non-citizen female trainees and citizen trainees of all genders, non-citizen male trainees expressed the highest interest in research-intensive (and especially principal investigator) careers. The authors discuss potential causes for these results and offer recommendations for increasing trainee career self-efficacy which can be incorporated into graduate and postdoctoral training

    Career Self-Efficacy Disparities in Underrepresented Biomedical Scientist Trainees

    No full text
    The present study examines racial, ethnic, and gender disparities in career self-efficacy amongst 6077 US citizens and US naturalized graduate and postdoctoral trainees. Respondents from biomedical fields completed surveys administered by the National Institutes of Health Broadening Experiences in Scientific Training (NIH BEST) programs across 17 US institutional sites. Graduate and postdoctoral demographic and survey response data were examined to evaluate the impact of intersectional identities on trainee career self-efficacy. The study hypothesized that race, ethnicity and gender, and the relations between these identities, would impact trainee career self-efficacy. The analysis demonstrated that racial and ethnic group, gender, specific career interests (academic principal investigator vs. other careers), and seniority (junior vs. senior trainee level) were, to various degrees, all associated with trainee career self-efficacy and the effects were consistent across graduate and postdoctoral respondents. Implications for differing levels of self-efficacy are discussed, including factors and events during training that may contribute to (or undermine) career self-efficacy. The importance of mentorship for building research and career self-efficacy of trainees is discussed, especially with respect to those identifying as women and belonging to racial/ethnic populations underrepresented in biomedical sciences. The results underscore the need for change in the biomedical academic research community in order to retain a diverse biomedical workforce. Interactive Tableau project available: https://public.tableau.com/app/profile/jan1760/viz/06152022_Careerselfefficacy_Interactionsofvariables/Interactionpattern

    Characterization of genetically complex Collaborative Cross mouse strains that model divergent locomotor activating and reinforcing properties of cocaine.

    No full text
    RATIONALE: Few effective treatments exist for cocaine use disorders due to gaps in knowledge about its complex etiology. Genetically defined animal models provide a useful tool for advancing our understanding of the biological and genetic underpinnings of addiction-related behavior and evaluating potential treatments. However, many attempts at developing mouse models of behavioral disorders were based on overly simplified single gene perturbations, often leading to inconsistent and misleading results in pre-clinical pharmacology studies. A genetically complex mouse model may better reflect disease-related behaviors. OBJECTIVES: Screening defined, yet genetically complex, intercrosses of the Collaborative Cross (CC) mice revealed two lines, RIX04/17 and RIX41/51, with extreme high and low behavioral responses to cocaine. We characterized these lines as well as their CC parents, CC004/TauUnc and CC041/TauUnc, to evaluate their utility as novel model systems for studying the biological and genetic mechanisms underlying behavioral responses to cocaine. METHODS: Behavioral responses to acute (initial locomotor sensitivity) and repeated (behavioral sensitization, conditioned place preference, intravenous self-administration) exposures to cocaine were assessed. We also examined the monoaminergic system (striatal tissue content and in vivo fast scan cyclic voltammetry), HPA axis reactivity, and circadian rhythms as potential mechanisms for the divergent phenotypic behaviors observed in the two strains, as these systems have a previously known role in mediating addiction-related behaviors. RESULTS: RIX04/17 and 41/51 show strikingly divergent initial locomotor sensitivity to cocaine with RIX04/17 exhibiting very high and RIX41/51 almost no response. The lines also differ in the emergence of behavioral sensitization with RIX41/51 requiring more exposures to exhibit a sensitized response. Both lines show conditioned place preference for cocaine. We determined that the cocaine sensitivity phenotype in each RIX line was largely driven by the genetic influence of one CC parental strain, CC004/TauUnc and CC041/TauUnc. CC004 demonstrates active operant cocaine self-administration and CC041 is unable to acquire under the same testing conditions, a deficit which is specific to cocaine as both strains show operant response for a natural food reward. Examination of potential mechanisms driving differential responses to cocaine show strain differences in molecular and behavioral circadian rhythms. Additionally, while there is no difference in striatal dopamine tissue content or dynamics, there are selective differences in striatal norepinephrine and serotonergic tissue content. CONCLUSIONS: These CC strains offer a complex polygenic model system to study underlying mechanisms of cocaine response. We propose that CC041/TauUnc and CC004/TauUnc will be useful for studying genetic and biological mechanisms underlying resistance or vulnerability to the stimulatory and reinforcing effects of cocaine

    Content and Performance of the MiniMUGA Genotyping Array, a New Tool To Improve Rigor and Reproducibility in Mouse Research.

    No full text
    The laboratory mouse is the most widely used animal model for biomedical research, due in part to its well annotated genome, wealth of genetic resources and the ability to precisely manipulate its genome. Despite the importance of genetics for mouse research, genetic quality control (QC) is not standardized, in part due to the lack of cost effective, informative and robust platforms. Genotyping arrays are standard tools for mouse research and remain an attractive alternative even in the era of high-throughput whole genome sequencing. Here we describe the content and performance of a new iteration of the Mouse Universal Genotyping Array, MiniMUGA, an array-based genetic QC platform with over 11,000 probes. In addition to robust discrimination between most classical and wild-derived laboratory strains, MiniMUGA was designed to contain features not available in other platforms: 1) chromosomal sex determination, 2) discrimination between substrains from multiple commercial vendors, 3) diagnostic SNPs for popular laboratory strains, 4) detection of constructs used in genetically engineered mice, and 5) an easy-to-interpret report summarizing these results. In-depth annotation of all probes should facilitate custom analyses by individual researchers. To determine the performance of MiniMUGA we genotyped 6,899 samples from a wide variety of genetic backgrounds. The performance of MiniMUGA compares favorably with three previous iterations of the MUGA family of arrays both in discrimination capabilities and robustness. We have generated publicly available consensus genotypes for 241 inbred strains including classical, wild-derived and recombinant inbred lines. Here we also report the detection of a substantial number of XO and XXY individuals across a variety of sample types, new markers that expand the utility of reduced complexity crosses to genetic backgrounds other than C57BL/6, and the robust detection of 17 genetic constructs. We provide preliminary evidence that the array can be used to identify both partial sex chromosome duplication and mosaicism, and that diagnostic SNPs can be used to determine how long inbred mice have been bred independently from the relevant main stock. We conclude that MiniMUGA is a valuable platform for genetic QC and an important new tool to the increase rigor and reproducibility of mouse research
    corecore