10 research outputs found

    Improved diagnosis by automated macro‐ and micro‐anatomical region mapping of skin photographs

    Full text link
    Background: The exact location of skin lesions is key in clinical dermatology. On one hand, it supports differential diagnosis (DD) since most skin conditions have specific predilection sites. On the other hand, location matters for dermatosurgical interventions. In practice, lesion evaluation is not well standardized and anatomical descriptions vary or lack altogether. Automated determination of anatomical location could benefit both situations. Objective: Establish an automated method to determine anatomical regions in clinical patient pictures and evaluate the gain in DD performance of a deep learning model (DLM) when trained with lesion locations and images. Methods: Retrospective study based on three datasets: macro-anatomy for the main body regions with 6000 patient pictures partially labelled by a student, micro-anatomy for the ear region with 182 pictures labelled by a student and DD with 3347 pictures of 16 diseases determined by dermatologists in clinical settings. For each dataset, a DLM was trained and evaluated on an independent test set. The primary outcome measures were the precision and sensitivity with 95% CI. For DD, we compared the performance of a DLM trained with lesion pictures only with a DLM trained with both pictures and locations. Results: The average precision and sensitivity were 85% (CI 84-86), 84% (CI 83-85) for macro-anatomy, 81% (CI 80-83), 80% (CI 77-83) for micro-anatomy and 82% (CI 78-85), 81% (CI 77-84) for DD. We observed an improvement in DD performance of 6% (McNemar test P-value 0.0009) for both average precision and sensitivity when training with both lesion pictures and locations. Conclusion: Including location can be beneficial for DD DLM performance. The proposed method can generate body region maps from patient pictures and even reach surgery relevant anatomical precision, e.g. the ear region. Our method enables automated search of large clinical databases and make targeted anatomical image retrieval possible

    Associations between depressive symptoms and disease progression in older patients with chronic kidney disease: results of the EQUAL study

    Get PDF
    Background Depressive symptoms are associated with adverse clinical outcomes in patients with end-stage kidney disease; however, few small studies have examined this association in patients with earlier phases of chronic kidney disease (CKD). We studied associations between baseline depressive symptoms and clinical outcomes in older patients with advanced CKD and examined whether these associations differed depending on sex. Methods CKD patients (>= 65 years; estimated glomerular filtration rate <= 20 mL/min/1.73 m(2)) were included from a European multicentre prospective cohort between 2012 and 2019. Depressive symptoms were measured by the five-item Mental Health Inventory (cut-off <= 70; 0-100 scale). Cox proportional hazard analysis was used to study associations between depressive symptoms and time to dialysis initiation, all-cause mortality and these outcomes combined. A joint model was used to study the association between depressive symptoms and kidney function over time. Analyses were adjusted for potential baseline confounders. Results Overall kidney function decline in 1326 patients was -0.12 mL/min/1.73 m(2)/month. A total of 515 patients showed depressive symptoms. No significant association was found between depressive symptoms and kidney function over time (P = 0.08). Unlike women, men with depressive symptoms had an increased mortality rate compared with those without symptoms [adjusted hazard ratio 1.41 (95% confidence interval 1.03-1.93)]. Depressive symptoms were not significantly associated with a higher hazard of dialysis initiation, or with the combined outcome (i.e. dialysis initiation and all-cause mortality). Conclusions There was no significant association between depressive symptoms at baseline and decline in kidney function over time in older patients with advanced CKD. Depressive symptoms at baseline were associated with a higher mortality rate in men

    G3BPs tether the TSC complex to lysosomes and suppress mTORC1 signaling

    Get PDF
    Ras GTPase-activating protein-binding proteins 1 and 2 (G3BP1 and G3BP2, respectively) are widely recognized as core components of stress granules (SGs). We report that G3BPs reside at the cytoplasmic surface of lysosomes. They act in a non-redundant manner to anchor the tuberous sclerosis complex (TSC) protein complex to lysosomes and suppress activation of the metabolic master regulator mechanistic target of rapamycin complex 1 (mTORC1) by amino acids and insulin. Like the TSC complex, G3BP1 deficiency elicits phenotypes related to mTORC1 hyperactivity. In the context of tumors, low G3BP1 levels enhance mTORC1-driven breast cancer cell motility and correlate with adverse outcomes in patients. Furthermore, G3bp1 inhibition in zebrafish disturbs neuronal development and function, leading to white matter heterotopia and neuronal hyperactivity. Thus, G3BPs are not only core components of SGs but also a key element of lysosomal TSC-mTORC1 signaling

    Symptom Burden before and after Dialysis Initiation in Older Patients

    No full text
    For older patients with kidney failure, lowering symptom burden may be more important than prolonging life. Dialysis initiation may affect individual kidney failure-related symptoms differently, but the change in symptoms before and after start of dialysis has not been studied. Therefore, we investigated the course of total and individual symptom number and burden before and after starting dialysis in older patients

    Predicting Kidney Failure, Cardiovascular Disease and Death in Advanced CKD Patients

    Get PDF
    Introduction: Predicting the timing and occurrence of kidney replacement therapy (KRT), cardiovascular events, and death among patients with advanced chronic kidney disease (CKD) is clinically useful and relevant. We aimed to externally validate a recently developed CKD G4+ risk calculator for these outcomes and to assess its potential clinical impact in guiding vascular access placement. Methods: We included 1517 patients from the European Quality (EQUAL) study, a European multicentre prospective cohort study of nephrology-referred advanced CKD patients aged ≥65 years. Model performance was assessed based on discrimination and calibration. Potential clinical utility for timing of referral for vascular access placement was studied with diagnostic measures and decision curve analysis (DCA). Results: The model showed a good discrimination for KRT and “death after KRT,” with 2-year concordance (C) statistics of 0.74 and 0.76, respectively. Discrimination for cardiovascular events (2-year C-statistic: 0.70) and overall death (2-year C-statistic: 0.61) was poorer. Calibration was fairly accurate. Decision curves illustrated that using the model to guide vascular access referral would generally lead to less unused arteriovenous fistulas (AVFs) than following estimated glomerular filtration rate (eGFR) thresholds. Conclusion: This study shows moderate to good predictive performance of the model in an older cohort of nephrology-referred patients with advanced CKD. Using the model to guide referral for vascular access placement has potential in combating unnecessary vascular surgeries
    corecore