112 research outputs found

    Petrology of the Skaergaard Layered Series

    Get PDF
    The Skaergaard intrusion is a layered, ferrobasaltic intrusion emplaced during the Early Eocene into the rifting volcanic margin of East Greenland. The magma chamber crystallised in response to cooling from the roof and margins upwards and inward, forming upper, marginal and bottom series, the latter referred to as the Layered Series. The phase layering in the bottom series suggests an evolved, olivine-normative tholeiitic melt saturated in plagioclase and olivine, followed by augite, and then simultaneously by ilmenite and magnetite forming primocrysts. Pigeonite appears in the lower parts and continues until the centre of the series. Apatite appears in the upper part concurrently with liquid immiscibility. Cryptic variations of the individual primocrysts record a systematic upward increase in iron and decrease in magnesium for the mafic minerals and a systematic increase in sodium and decrease in calcium for plagioclase. The appearance of pigeonite is caused by reactions and crystallisation in the trapped melt and by subsolidus adjustments without this phase reaching liquidus saturation. The high mode of olivine at the base of the upper part with the appearance of apatite is interpreted to mark the onset of liquid immiscibility. This may have led to the separation of conjugate melts with granophyre migrating upward and the basic component largely staying stationary or sinking. Petrologic and geochemical observations indicate differentiation in the lower part of the intrusion, principally controlled by crystal fractionation with the efficiency of fractionation controlled by the evolution and escape of liquid from the solidifying mush. During the final stages of solidification, the onset of liquid immiscibility and termination of melt convection impeded differentiation. Modelling by perfect Rayleigh fractionation shows that major and included trace elements conform reasonably to observations, while excluded elements deviate from model predictions. This decoupling is caused by the mobility of a granophyre component formed in the trapped melt and in the main residual magma chamber. Consequently, the sampled gabbros may not be representative of the final solid-melt mush. By restoring the gabbros to their original mush compositions, it is possible to constrain granophyre migration pathways. We suggest that the granophyre formed in the trapped melt in the lower part of the intrusion mostly migrated laterally through pressure release pathways to form lenses and pockets with only limited upward migration into the main magma reservoir. Near the end stage of differentiation, the residual magma exsolved and formed complex mixtures of ferrobasaltic and granophyric melts. Estimates predict that a substantial amount of the granophyric melt penetrated as sills into the downward crystallising, upper part of the body as well as into the host rocks. The redistribution of granophyric melts within the solidifying crystal mush complicates predictions of trapped-melt content and mass-balance calculations but helps to explain apparent decoupling of included and excluded trace elements, especially towards the end stages of evolution. Final crystallisation was controlled mostly by in situ crystallisation leaving complex mixtures of ferrodiorite and granophyre components.

    Platinum-group elements link the end-Triassic mass extinction and the Central Atlantic Magmatic Province

    Get PDF
    Elevated concentrations of iridium (Ir) and other platinum-group elements (PGE) have been reported in both terrestrial and marine sediments associated with the end-Triassic mass extinction (ETE) c. 201.5 million years ago. The source of the PGEs has been attributed to condensed vapor and melt from an extraterrestrial impactor or to volcanism. Here we report new PGE data for volcanic rocks of the Central Atlantic Magmatic Province (CAMP) in Morocco and show that their Pd/Ir, Pt/Ir and Pt/Rh ratios are similar to marine and terrestrial sediments at the ETE, and very different from potential impactors. Hence, we propose the PGEs provide a new temporal correlation of CAMP volcanism to the ETE, corroborating the view that mass extinctions may be caused by volcanism

    A whole-rock data set for the Skaergaard intrusion, East Greenland

    Get PDF
    We report a compilation of new and published whole-rock major and trace element analyses for 646 samples of the Skaergaard intrusion, East Greenland. The samples were collected in 14 stratigraphic profiles either from accessible and well-exposed surface areas or from drill core, and they cover most regions of the intrusion. This includes the Layered Series, the Upper Border Series, the Marginal Border Series and the Sandwich Horizon. The geochemical data were obtained by a combination of X-ray fluorescence and inductively coupled plasma mass spectrometry. This data set can, for example, be used to constrain processes of igneous differentiation and ore formation.

    Platinum-group mineralization at the margin of the Skaergaard intrusion, East Greenland

    Get PDF
    Two occurrences of platinum-group elements (PGEs) along the northern margin of the Skaergaard intrusion include a sulfide-bearing gabbro with slightly less than 1 ppm PGE + Au and a clinopyroxene-actinolite-plagioclase-biotite-ilmenite schist with 16 vol% sulfide and 1.8 ppm PGE + Au. Both have assemblages of pyrrhotite, pentlandite, and chalcopyrite typical for orthomagmatic sulfides. Matching platinum-group mineral assemblages with sperrylite (PtAs2), kotulskite (Pd(Bi,Te)1–2), froodite (PdBi2), michenerite (PdBiTe), and electrum (Au,Ag) suggest a common origin. Petrological and geochemical similarities suggest that the occurrences are related to the Skaergaard intrusion. The Marginal Border Series locally displays Ni depletion consistent with sulfide fractionation, and the PGE fractionation trends of the occurrences are systematically enriched by 10–50 times over the chilled margin. The PGE can be explained by sulfide-silicate immiscibility in the Skaergaard magma with R factors of 110–220. Nickel depletion in olivine suggests that the process occurred within the host cumulate, and the low R factors require little sulfide mobility. The sulfide assemblages are different to the chalcopyrite-bornite-digenite assemblage found in the Skaergaard Layered Series and Platinova Reef. These differences can be explained by the early formation of sulfide melt, while magmatic differentiation or sulfur loss caused the unusual sulfide assemblage within the Layered Series. The PGEs indicate that the sulfides formed from the Skaergaard magma. The sulfides and PGEs could not have formed from the nearby Watkins Fjord wehrlite intrusion, which is nearly barren in sulfide. We suggest that silicate-sulfide immiscibility led to PGE concentration where the Skaergaard magma became contaminated with material from the Archean basement

    Mantle dynamics of the Central Atlantic Magmatic Province (CAMP): Constraints from platinum group, gold and lithophile elements in flood basalts of Morocco

    Get PDF
    Mantle melting dynamics of the Central Atlantic Magmatic Province (CAMP) are constrained from new platinum group element (PGE), rare earth element (REE), and high field strength element (HFSE) data and geochemical modelling of flood basalts in Morocco. The PGE are enriched similarly to flood basalts of other large igneous provinces. The magmas did not experience sulphide saturation during fractionation and were therefore fertile. The CAMP province is thus prospective for PGE and Gold mineralisation. The Pt/Pd ratio of the Moroccan lavas indicates that they originated by partial melting of the asthenospheric mantle, not the subcontinental lithospheric mantle. Mantle melting modelling of PGE, REE and HFSE suggests: (1) that the mantle source for all the lavas was dominated by primitive mantle and invariably included a small proportion of recycled continental crust (<8%); (2) the mantle potential temperature was moderately elevated (c. 1430 °C) relative to ambient mantle; (3) intra-lava unit compositional variations are likely a combined result of variable amounts of crust in the mantle source (heterogeneous source) and fractional crystallisation; (4) mantle melting initially took place at depths between c. 110 km and c. 55 km and became shallower with time (c. 110 km to c. 32 km depth); and (5) the melting region appears to have changed from triangular to columnar with time. These results are best explained by melting of asthenospheric mantle that was mixed with continental sediments during the assembly of Pangaea, then heated and further mixed by convection while insulated under the Pangaea supercontinent, and subsequently melted in multiple continental rift systems associated with the breakup of Pangaea. Most likely the CAMP volcanism was triggered by the arrival of a mantle plume, although plume material apparently was not contributing directly (chemically) to the magmas in Morocco, nor to many other areas of CAMP

    Tracing North Atlantic volcanism and seaway connectivity across the Paleocene–Eocene Thermal Maximum (PETM)

    Get PDF
    Abstract. There is a temporal correlation between the peak activity of the North Atlantic Igneous Province (NAIP) and the Paleocene–Eocene Thermal Maximum (PETM), suggesting that the NAIP may have initiated and/or prolonged this extreme warming event. However, corroborating a causal relationship is hampered by a scarcity of expanded sedimentary records that contain both climatic and volcanic proxies. One locality hosting such a record is the island of Fur in Denmark, where an expanded pre- to post-PETM succession containing hundreds of NAIP ash layers is exceptionally well preserved. We compiled a range of environmental proxies, including mercury (Hg) anomalies, paleotemperature proxies, and lithium (Li) and osmium (Os) isotopes, to trace NAIP activity, hydrological changes, weathering, and seawater connectivity across this interval. Volcanic proxies suggest that NAIP activity was elevated before the PETM and appears to have peaked during the body of the δ13C excursion but decreased considerably during the PETM recovery. This suggests that the acme in NAIP activity, dominated by flood basalt volcanism and thermogenic degassing from contact metamorphism, was likely confined to just ∼ 200 kyr (ca. 56.0–55.8 Ma). The hundreds of thick (&gt; 1 cm) basaltic ashes in the post-PETM strata likely represent a change from effusive to explosive activity, rather than an increase in NAIP activity. Detrital δ7Li values and clay abundances suggest that volcanic ash production increased the basaltic reactive surface area, likely enhancing silicate weathering and atmospheric carbon sequestration in the early Eocene. Signals in lipid biomarkers and Os isotopes, traditionally used to trace paleotemperature and weathering changes, are used here to track seaway connectivity. These proxies indicate that the North Sea was rapidly cut off from the North Atlantic in under 12 kyr during the PETM recovery due to NAIP thermal uplift. Our findings reinforce the hypothesis that the emplacement of the NAIP had a profound and complex impact on Paleocene–Eocene climate, both directly through volcanic and thermogenic degassing and indirectly by driving regional uplift and changing seaway connectivity

    Northeast Atlantic breakup volcanism and consequences for Paleogene climate change - MagellanPlus Workshop report

    Get PDF
    The northeast Atlantic encompasses archetypal examples of volcanic rifted margins. Twenty-five years after the last ODP (Ocean Drilling Program) leg on these volcanic margins, the reasons for excess melting are still disputed with at least three competing hypotheses being discussed. We are proposing a new drilling campaign that will constrain the timing, rates of volcanism, and vertical movements of rifted margins. This will allow us to parameterise geodynamic models that can distinguish between the hypotheses. Furthermore, the drilling-derived data will help us to understand the role of breakup magmatism as a potential driver for the Palaeocene–Eocene thermal maximum (PETM) and its influence on the oceanographic circulation in the earliest phase of the northeast Atlantic Ocean formation. Tackling these questions with a new drilling campaign in the northeast Atlantic region will advance our understanding of the long-term interactions between tectonics, volcanism, oceanography, and climate and the functioning of subpolar northern ecosystems and climate during intervals of extreme warmth
    • …
    corecore