91 research outputs found

    What’s new in laser based nanofabrication for the fast uptake in industrial application

    Get PDF
    Laser based efficient new nanofabrication methods with technical feasibility for the fast uptake in industrial application are of significant global demand. A recent simplest approach in this way is the standard pulsed laser deposition (PLD), used since 1960s after the development of high power lasers. Over all, PLD is a fit method towards the preparation of a variety of nanomaterials only for research purpose. Nevertheless, the method is relatively slow and could not adopted in industrial scale application. A recent new-fangled development in this direction is the atmospheric-PLD (APLD), where ablation of the target by a laser pulse occurs at atmospheric gas pressure and the ablated material is delivered to the substrate using a flowing medium such as gas or atmospheric plasma. With this method, a variety of nanomaterials such as plasmonic metal NP film could be produced for practical a

    Sensing of HSV-1 by the cGAS-STING pathway in microglia orchestrates antiviral defence in the CNS

    Get PDF
    Herpes simplex encephalitis (HSE) is the most common form of acute viral encephalitis in industrialized countries. Type I interferon (IFN) is important for control of herpes simplex virus (HSV-1) in the central nervous system (CNS). Here we show that microglia are the main source of HSV-induced type I IFN expression in CNS cells and these cytokines are induced in a cGAS-STING-dependent manner. Consistently, mice defective in cGAS or STING are highly susceptible to acute HSE. Although STING is redundant for cell-autonomous antiviral resistance in astrocytes and neurons, viral replication is strongly increased in neurons in STING-deficient mice. Interestingly, HSV-infected microglia confer STING-dependent antiviral activities in neurons and prime type I IFN production in astrocytes through the TLR3 pathway. Thus, sensing of HSV-1 infection in the CNS by microglia through the cGAS-STING pathway orchestrates an antiviral program that includes type I IFNs and immune-priming of other cell types

    Modelling the Material Resistance of Wood—Part 3: Relative Resistance in above- and in-Ground Situations—Results of a Global Survey

    Get PDF
    Durability-based designs with timber require reliable information about the wood properties and how they affect its performance under variable exposure conditions. This study aimed at utilizing a material resistance model (Part 2 of this publication) based on a dose–response approach for predicting the relative decay rates in above-ground situations. Laboratory and field test data were, for the first time, surveyed globally and used to determine material-specific resistance dose values, which were correlated to decay rates. In addition, laboratory indicators were used to adapt the material resistance model to in-ground exposure. The relationship between decay rates in- and above-ground, the predictive power of laboratory indicators to predict such decay rates, and a method for implementing both in a service life prediction tool, were established based on 195 hardwoods, 29 softwoods, 19 modified timbers, and 41 preservative-treated timbers

    Modeling the material resistance of wood—part 2:Validation and optimization of the meyer-veltrup model

    Get PDF
    Service life planning with timber requires reliable models for quantifying the effects of exposure-related parameters and the material-inherent resistance of wood against biotic agents. The Meyer-Veltrup model was the first attempt to account for inherent protective properties and the wetting ability of wood to quantify resistance of wood in a quantitative manner. Based on test data on brown, white, and soft rot as well as moisture dynamics, the decay rates of different untreated wood species were predicted relative to the reference species of Norway spruce (Picea abies). The present study aimed to validate and optimize the resistance model for a wider range of wood species including very durable species, thermally and chemically modified wood, and preservative treated wood. The general model structure was shown to also be suitable for highly durable materials, but previously defined maximum thresholds had to be adjusted (i.e., maximum values of factors accounting for wetting ability and inherent protective properties) to 18 instead of 5 compared to Norway spruce. As expected, both the enlarged span in durability and the use of numerous and partly very divergent data sources (i.e., test methods, test locations, and types of data presentation) led to a decrease in the predictive power of the model compared to the original. In addition to the need to enlarge the database quantity and improve its quality, in particular for treated wood, it might be advantageous to use separate models for untreated and treated wood as long as the effect of additional impact variables (e.g., treatment quality) can be accounted for. Nevertheless, the adapted Meyer-Veltrup model will serve as an instrument to quantify material resistance for a wide range of wood-based materials as an input for comprehensive service life prediction software

    Determining the Best Immunization Strategy for Protecting African Children Against Invasive Salmonella Disease.

    Get PDF
    BACKGROUND: The World Health Organization recently prequalified a typhoid conjugate vaccine (TCV), recommending its use in persons ≥6 months to 45 years residing in typhoid fever (TF)-endemic areas. We now need to consider how TCVs can have the greatest impact in the most vulnerable populations. METHODS: The Typhoid Fever Surveillance in Africa Program (TSAP) was a blood culture-based surveillance of febrile patients from defined populations presenting at healthcare facilities in 10 African countries. TF and invasive non-typhoidal Salmonella (iNTS) disease incidences were estimated for 0-10 year-olds in one-year age increments. RESULTS: Salmonella Typhi and iNTS were the most frequently isolated pathogens; 135 and 94 cases were identified, respectively. Analysis from three countries was excluded (incomplete person-years of observation (PYO) data). Thirty-seven of 123 TF cases (30.1%) and 71/90 iNTS disease cases (78.9%) occurred in children aged <5 years. No TF and 8/90 iNTS infections (8.9%) were observed in infants aged <9 months. The TF incidences (/100 000 PYO) for children aged <1 year and 1 to <2 years were 5 and 39, respectively; the highest incidence was 304 per 100 000 PYO in 4 to <5 year-olds. The iNTS disease incidence in the defined age groups ranged between 81 and 233 per 100 000 PYO, highest in 1 to <2 year-olds. TF and iNTS disease incidences were higher in West Africa. CONCLUSIONS: High burden of TF detected in young children strengthens the need for TCV introduction. Given the concurrent iNTS disease burden, development of a trivalent vaccine against S. Typhi, S. Typhimurium, and S. Enteritidis may be timely in this region

    Whole grain-rich diet reduces body weight and systemic low-grade inflammation without inducing major changes of the gut microbiome: a randomised cross-over trial

    Get PDF
    Objective To investigate whether a whole grain diet alters the gut microbiome and insulin sensitivity, as well as biomarkers of metabolic health and gut functionality. Design 60 Danish adults at risk of developing metabolic syndrome were included in a randomised cross-over trial with two 8-week dietary intervention periods comprising whole grain diet and refined grain diet, separated by a washout period of ≥6 weeks. The response to the interventions on the gut microbiome composition and insulin sensitivity as well on measures of glucose and lipid metabolism, gut functionality, inflammatory markers, anthropometry and urine metabolomics were assessed. Results 50 participants completed both periods with a whole grain intake of 179±50 g/day and 13±10 g/day in the whole grain and refined grain period, respectively. Compliance was confirmed by a difference in plasma alkylresorcinols (p&lt;0.0001). Compared with refined grain, whole grain did not significantly alter glucose homeostasis and did not induce major changes in the faecal microbiome. Also, breath hydrogen levels, plasma short-chain fatty acids, intestinal integrity and intestinal transit time were not affected. The whole grain diet did, however, compared with the refined grain diet, decrease body weight (p&lt;0.0001), serum inflammatory markers, interleukin (IL)-6 (p=0.009) and C-reactive protein (p=0.003). The reduction in body weight was consistent with a reduction in energy intake, and IL-6 reduction was associated with the amount of whole grain consumed, in particular with intake of rye. Conclusion Compared with refined grain diet, whole grain diet did not alter insulin sensitivity and gut microbiome but reduced body weight and systemic low-grade inflammation

    Platform trials

    Get PDF
    Platform trials focus on the perpetual testing of many interventions in a disease or a setting. These trials have lasting organizational, administrative, data, analytic, and operational frameworks making them highly efficient. The use of adaptation often increases the probabilities of allocating participants to better interventions and obtaining conclusive results. The COVID-19 pandemic showed the potential of platform trials as a fast and valid way to improved treatments. This review gives an overview of key concepts and elements using the Intensive Care Platform Trial (INCEPT) as an example.</p

    A low-gluten diet induces changes in the intestinal microbiome of healthy Danish adults

    Get PDF
    \ua9 2018, The Author(s). Adherence to a low-gluten diet has become increasingly common in parts of the general population. However, the effects of reducing gluten-rich food items including wheat, barley and rye cereals in healthy adults are unclear. Here, we undertook a randomised, controlled, cross-over trial involving 60 middle-aged Danish adults without known disorders with two 8-week interventions comparing a low-gluten diet (2 g gluten per day) and a high-gluten diet (18 g gluten per day), separated by a washout period of at least six weeks with habitual diet (12 g gluten per day). We find that, in comparison with a high-gluten diet, a low-gluten diet induces moderate changes in the intestinal microbiome, reduces fasting and postprandial hydrogen exhalation, and leads to improvements in self-reported bloating. These observations suggest that most of the effects of a low-gluten diet in non-coeliac adults may be driven by qualitative changes in dietary fibres
    • …
    corecore