212 research outputs found
Large magneto-Seebeck effect in magnetic tunnel junctions with half-metallic Heusler electrodes
Spin caloritronics studies the interplay between charge-, heat- and
spin-currents, which are initiated by temperature gradients in magnetic
nanostructures. A plethora of new phenomena has been discovered that promises,
e.g., to make wasted heat in electronic devices useable or to provide new
read-out mechanisms for information. However, only few materials have been
studied so far with Seebeck voltages of only some {\mu}V, which hampers
applications. Here, we demonstrate that half-metallic Heusler compounds are hot
candidates for enhancing spin-dependent thermoelectric effects. This becomes
evident when considering the asymmetry of the spin-split density of electronic
states around the Fermi level that determines the spin-dependent thermoelectric
transport in magnetic tunnel junctions. We identify CoFeAl and CoFeSi
Heusler compounds as ideal due to their energy gaps in the minority density of
states, and demonstrate devices with substantially larger Seebeck voltages and
tunnel magneto-Seebeck effect ratios than the commonly used Co-Fe-B based
junctions.Comment: 9 pages, 4 figure
The first major incision of the Swiss Deckenschotter landscape
The Swiss Deckenschotter ("cover gravels”) is the oldest Quaternary units in the northern Swiss Alpine Foreland. They are a succession of glaciofluvial gravel layers intercalated with glacial and/or overbank deposits. This lithostratigraphic sequence is called Deckenschotter because it "covers” Molasse or Mesozoic bedrock and forms mesa-type hill-tops. Deckenschotter occurs both within and beyond the extent of the Last Glacial Maximum glaciers. The Swiss Deckenschotter consist of two sub-units: Höhere (Higher) and Tiefere (Lower) Deckenschotter. Although the Höhere Deckenschotter sub-unit (HDS) is topographically higher than the Tiefere Deckenschotter, it is older. The only available age for the Swiss Deckenschotter is 2.5-1.8Ma based on mammal remains found in HDS at the Irchel site. In this study, we present an exposure age for the topographically lowest HDS, calculated from a cosmogenic 10Be depth-profile. Our results show that the first phase of the Deckenschotter glaciations in the Swiss Alps terminated at least 1,020 - 120 + 80 ka ago, which is indicated by a significant fluvial incision. This line of evidence seems to be close to synchronous with the beginning of the Mid-Pleistocene Revolution, when the frequency of the glacial-interglacial cyclicity changed from 41 to 100ka and the amplitude from low to high, between marine isotope stages 23 and 22
- …