102 research outputs found

    Pressure jump interface law for the Stokes-Darcy coupling: Confirmation by direct numerical simulations

    Full text link
    It is generally accepted that the effective velocity of a viscous flow over a porous bed satisfies the Beavers-Joseph slip law. To the contrary, interface law for the effective stress has been a subject of controversy. Recently, a pressure jump interface law has been rigorously derived by Marciniak-Czochra and Mikeli\'c. In this paper, we provide a confirmation of the analytical result using direct numerical simulation of the flow at the microscopic level.Comment: 25 pages, preprin

    Structured Population Models on Polish Spaces: A unified approach including Graphs, Riemannian Manifolds and Measure Spaces

    Full text link
    We provide well-posedness theory of a nonlinear structured population model on an abstract metric space which is only assumed to be separable and complete. To this end, we leverage the structure of the space of nonnegative Radon measures under the dual bounded Lipschitz distance (flat metric) which can be seen as a generalization of Wasserstein distance to nonconservative problems. Motivated by applications, the formulation of models on fairly general metric spaces allows us to consider processes on infinite-dimensional state spaces or on graphs combining discrete and continuous structures

    Overnight pulse wave analysis to assess autonomic changes during sleep in insomnia patients and healthy sleepers

    Get PDF
    Insomnia has been associated with increased cardiovascular (CV) risk, which may be linked to sympathetic activation. Non-invasive overnight pulse wave analysis may be a useful tool to detect early signs of autonomic changes during sleep in insomniacs. Fifty-two participants (26 men, 37±13 years, BMI: 24±5 kg/m2, 26 insomniacs/ 26 controls) underwent overnight polysomnography with pulse oximetry and pulse wave analysis including pulse rate, vascular stiffness (pulse propagation time, PPT), and a composite cardiac risk index based on autonomic function and overnight hypoxia. We identified two subgroups of insomniacs, with and without objectively disturbed sleep (sleep efficiency SE≤80%, n = 14 vs. SE>80%, n = 12), and observed increased pulse rate and vascular stiffness in insomnia cases when diagnosis was based on both, subjective and objective criteria. Both insomnia groups were associated with higher overnight pulse rate than controls (median/ IQR: low-SE (low sleep efficiency): 67/ 58-70bpm; high-SE: 66/ 63-69bpm; controls: 58/ 52-63bpm; p = 0.01). Vascular stiffness was higher (reduction of PPT) in low-SE insomniacs compared with high-SE insomniacs and controls (169/ 147-232ms; 237/ 215-254ms; 244/ 180-284ms; p = 0.01). The cardiac risk index was increased in low-SE insomniacs (0.2/ 0.0–0.7; 0.0/ 0.0–0.4; 0.0/ 0.0–0.3; p = 0.05). Our results suggest a hyperarousal state in young and otherwise healthy insomniacs during sleep. The increased pulse rate and vascular stiffness in insomniacs with low SE suggest early signs of rigid vessels and potentially, an elevated CV risk. Overnight pulse wave analysis may be feasible for CV risk assessment in insomniacs and may provide a useful tool for phenotyping insomnia in order to provide individualized therapy

    A compact ion-trap quantum computing demonstrator

    Full text link
    Quantum information processing is steadily progressing from a purely academic discipline towards applications throughout science and industry. Transitioning from lab-based, proof-of-concept experiments to robust, integrated realizations of quantum information processing hardware is an important step in this process. However, the nature of traditional laboratory setups does not offer itself readily to scaling up system sizes or allow for applications outside of laboratory-grade environments. This transition requires overcoming challenges in engineering and integration without sacrificing the state-of-the-art performance of laboratory implementations. Here, we present a 19-inch rack quantum computing demonstrator based on 40Ca+^{40}\textrm{Ca}^+ optical qubits in a linear Paul trap to address many of these challenges. We outline the mechanical, optical, and electrical subsystems. Further, we describe the automation and remote access components of the quantum computing stack. We conclude by describing characterization measurements relevant to digital quantum computing including entangling operations mediated by the Molmer-Sorenson interaction. Using this setup we produce maximally-entangled Greenberger-Horne-Zeilinger states with up to 24 ions without the use of post-selection or error mitigation techniques; on par with well-established conventional laboratory setups
    • …
    corecore