39 research outputs found

    Understanding the atomic-scale contrast in Kelvin Probe Force Microscopy

    Get PDF
    A numerical analysis of the origin of the atomic-scale contrast in Kelvin probe force microscopy (KPFM) is presented. Atomistic simulations of the tip-sample interaction force field have been combined with a non-contact Atomic Force Microscope/KPFM simulator. The implementation mimics recent experimental results on the (001) surface of a bulk alkali halide crystal for which simultaneous atomic-scale topographical and Contact Potential Difference (CPD) contrasts were reported. The local CPD does reflect the periodicity of the ionic crystal, but not the magnitude of its Madelung surface potential. The imaging mechanism relies on the induced polarization of the ions at the tip-surface interface owing to the modulation of the applied bias voltage. Our findings are in excellent agreement with previous theoretical expectations and experimental observations

    On the relevance of the atomic-scale contact potential difference by Amplitude modulation- and Frequency modulation-Kelvin probe force microscopy

    No full text
    International audienceThe influence of short-range electrostatic forces on the measured local Contact Potential Difference (CPD) by means of Amplitude Modulation- and Frequency Modulation-Kelvin Probe Force Microscopy (AM- and FM-KPFM) is discussed on the base of numeric and analytic descriptions of both methods. The goal of this work is to help interpreting recent experimental results reporting atomically-resolved CPD images, in particular on bulk insulating samples. The discussion is carried out on the base of spectroscopic curves. The expression of the bias-dependent electrostatic force derives from a previous work and is estimated between a tip with simple geometry and the (001) facet of a perfect alkali halide single crystal. The force, with a short-range character, scales as a second-order polynomial function of the bias voltage. It is stated that the linear term is responsible for the occurrence of the atomic-scale CPD contrast, while the quadratic one, involving the sample polarisation, accounts for the detected signal by the KPFM methods. Nevertheless, analytic and numeric approaches stress the influence of the linear term on the measured CPD which intrinsically hinders the possibility to perform quantitative CPD measurements, but also makes the measured ``pseudo-CPD" strongly deviating from the surface potential. Hence, in the short-range regime, AM- or FM-KPFM measurements neither reflect the CPD nor the local surface potential, but rather an effective value which is convoluted by the geometric parameters of the tip, the so-called local CPD. At last, the influence of long-range, capacitive, electrostatic forces is discussed in conjunction with the short-range ones. This allows us to draw conclusions regarding the distance dependence of the local CPD which then exhibits a resonant behavior as a function of the tip-surface separation. This phenomenon is expected to play a role in the KPFM imaging process

    Analytical Approach to the Local Contact Potential Difference on (001) Ionic Surfaces: Implications for Kelvin Probe Force Microscopy

    Full text link
    An analytical model of the electrostatic force between the tip of a non-contact Atomic Force Microscope (nc-AFM) and the (001) surface of an ionic crystal is reported. The model is able to account for the atomic contrast of the local contact potential difference (CPD) observed while nc-AFM-based Kelvin Probe Force Microscopy (KPFM) experiments. With the goal in mind to put in evidence this short-range electrostatic force, the Madelung potential arising at the surface of the ionic crystal is primarily derived. The expression of the force which is deduced can be split into two major contributions: the first stands for the coupling between the microscopic structure of the tip apex and the capacitor formed between the tip, the ionic crystal and the counter-electrode; the second term depicts the influence of the Madelung surface potential on the mesoscopic part of the tip, independently from its microscopic structure. These short-range electrostatic forces are in the range of ten pico-Newtons. When explicitly considering the crystal polarization, an analytical expression of the bias voltage to be applied on the tip to compensate for the local CPD, i.e. to cancel the short-range electrostatic force, is derived. The compensated CPD has the lateral periodicity of the Madelung surface potential. However, the strong dependence on the tip geometry, the applied modulation voltage as well as the tip-sample distance, which can even lead to an overestimation of the real surface potential, makes quantitative KPFM measurements of the local CPD extremely difficult

    Probing Polarization and Dielectric Function of Molecules with Higher Order Harmonics in Scattering-near-field Scanning Optical Microscopy

    Get PDF
    The idealized system of an atomically flat metallic surface [highly oriented pyrolytic graphite (HOPG)] and an organic monolayer (porphyrin) was used to determine whether the dielectric function and associated properties of thin films can be accessed with scanning–near-field scanning optical microscopy (s-NSOM). Here, we demonstrate the use of harmonics up to fourth order and the polarization dependence of incident light to probe dielectric properties on idealized samples of monolayers of organic molecules on atomically smooth substrates. An analytical treatment of light/ sample interaction using the s-NSOM tip was developed in order to quantify the dielectric properties. The theoretical analysis and numerical modeling, as well as experimental data, demonstrate that higher order harmonic scattering can be used to extract the dielectric properties of materials with tens of nanometer spatial resolution. To date, the third harmonic provides the best lateral resolution(~50 nm) and dielectric constant contrast for a porphyrin film on HOPG

    Micrometre-long covalent organic fibres by photoinitiated chain-growth radical polymerization on an alkali-halide surface

    Get PDF
    On-surface polymerization is a promising technique to prepare organic functional nanomaterials that are challenging to synthesize in solution, but it is typically used on metal substrates, which play a catalytic role. Previous examples on insulating surfaces have involved intermediate self-assembled structures, which face high barriers to diffusion, or annealing to higher temperatures, which generally causes rapid dewetting and desorption of the monomers. Here we report the photoinitiated radical polymerization, initiated from a two-dimensional gas phase, of a dimaleimide monomer on an insulating KCl surface. Polymer fibres up to 1 Όm long are formed through chain-like rather than step-like growth. Interactions between potassium cations and the dimaleimide’s oxygen atoms facilitate the propagation of the polymer fibres along a preferred axis of the substrate over long distances. Density functional theory calculations, non-contact atomic force microscopy imaging and manipulations at room temperature were used to explore the initiation and propagation processes, as well as the structure and stability of the resulting one-dimensional polymer fibres

    Polarization effects in Non-Contact Atomic Force Microscopy: a key to model the tip-sample interaction above charged adatoms

    No full text
    International audienceWe discuss the influence of short-range electrostatic forces, so called dipolar forces, between the tip of an atomic force microscope (AFM) and a surface carrying charged adatoms. Dipolar forces are of microscopic character and have their origin in the polarizability of the foremost atoms on tip and surface. In most experiments performed by non-contact AFM, other forces such as binding forces dominate the interaction. However, in the experiments presented by Gross \emph{et al.} [Science 324, 1428 (2009)], where the charge state of individual gold atoms adsorbed on a thin dielectric layer was determined, binding forces are negligible as the tip-sample distance is relatively large. We develop a model which mimics the experimental tip-sample geometry of the aforementioned experiments. The model includes van der Waals and long-range electrostatic interactions, as well as the short-range electrostatic interaction based on the self-consistent description of electronic polarization effects on neutral and charged adatoms. The model is based on a calculation of the electrostatic energy of the tip-sample geometry. Our calculations of non-contact AFM imaging as well as of bias spectroscopic curves are in good agreement with the experimental ones presented by Gross \emph{et al.} It is demonstrated that the short-range dipolar force is mainly responsible for the contrast observed in topography imaging above charged species. However, it is the long-range capacitive force which is responsible for the detection of the charge state in bias spectroscopy. We discuss implications of our findings on future experiments which aim to detect single charges by means of Kelvin probe force microscopy

    Photochemistry Highlights on On‐Surface Synthesis

    No full text
    International audienceOn‐surface chemistry is a promising way to achieve the bottom‐up construction of covalently‐bonded molecular precursors into extended atomically‐precise polymers adsorbed on surfaces. These polymers exhibit unprecedented physical or chemical properties which are of great interest for various potential applications. These nanostructures were mainly obtained in ultra‐high vacuum (UHV) on noble metal single‐crystal surfaces by thermal annealing as stimulus to provoke the polymerization with a catalytic role of the surface adatoms. Nevertheless, photons are also a powerful source of energy to induce the formation of covalent architectures, even if it is less‐used on surfaces than in solution. In this minireview, we discuss the photo‐induced on‐surface polymerization from the basic mechanisms of photochemistry to the formation of extended polymers on different kinds of surfaces, which are characterized by scanning probe microscopies

    Photochemistry highlights on-surface synthesis

    No full text
    International audienceOn-surface chemistry is promising way in order to achieve the bottom-up construction of covalently-bonded molecular precursors into extended atomically-precise polymers adsorbed on surfaces. These polymers exhibit unprecedented physical or chemical properties which are of great interest for various potential applications. The fabrication of these nanostructures was mainly obtained in ultrahigh vacuum (UHV) environment on single-crystal surfaces, i. e. noble metal surfaces, by thermal annealing as stimulus to provoke the polymerisation with a "catalytic" role of the surfaces adatoms. Nevertheless, photons are also a powerful source of energy to induce the formation of covalent architectures, even if it is less-used on surfaces than in solution. In this minireview, we discuss the photoinduced on-surface polymerization from the basic mechanisms of photochemistry to the formation of extended polymers on different kinds of surfaces which are characterized by scanning probe microscopies
    corecore