61 research outputs found

    Quanten-Hall-Systeme in hohen Landau-Niveaus

    Get PDF
    Title Page and Front Matter Table of Contents i 1\. Introduction 1 1.1 The Integer Quantum Hall Effect 1 1.2 The Fractional Quantum Hall Effect 2 1.3 High Landau Levels 9 1.4 This Thesis 11 2\. Microwave-Induced Zero Resistance States 15 2.1 Zero Resistance States and Microwave-Induced Resistance Oscillations 15 2.2 Theoretical Explanation of ZRS 17 3\. Classical Model for a Microwave-Irradiated 2DEG in the Presence of Bichromatic Irradiation 27 3.1 Monochromatic Irradiation 28 3.2 Bichromatic Irradiation 31 3.3 Bichromatic Irradiation and Absolute Negative Conductivity 45 3.4 Discussion 46 4\. Microwave Photoconductivity due to Intra-Landau-Level Transitions 49 4.1 Experiment 50 4.2 Model 51 4.3 Mechanisms 60 4.4 Dark Current 66 4.5 Photocurrent 68 4.6 Comparison with Experiment 77 4.7 Polarization Dependence 79 4.8 Discussion 80 5\. In-Plane Magnetic Field 83 5.1 Theory 84 5.2 Results 92 5.3 Discussion 94 6\. Drag in Double-Layer Systems 97 6.1 Conventions 98 6.2 Coulomb Drag 100 6.3 Phonon Drag 102 6.4 Linear Response Theory of Drag 104 7\. Phonon Drag in High Landau Levels 109 7.1 Linear Response Theory of Phonon Drag: Triangle Vertex and Polarization Function 109 7.2 Interaction of 2D Electrons with Bulk Phonons in the Bilayer System 117 7.3 Analytical Results 124 7.4 Numerical Results 131 7.5 Discussion 139 8\. Conclusions 141 Appendix 145 Acknowledgments 175 Bibliography 179 Abstract Citations of previously published workIn recent years, the experimental study of quantum Hall systems in weak magnetic fields has yielded unexpected and interesting discoveries. In this thesis, we focus on the two most interesting phenomena observed in magnetotransport experiments on such systems: (i) zero resistance states in microwave-irradiated high mobility samples and (ii) drag between parallel two- dimensional electron gases (2DEG) in double-layer samples. The diagonal resistivity of a 2DEG in an ultraclean GaAs/AlGaAs heterostructure subjected to microwave radiation exhibits magnetooscillations whose minima, for sufficiently high microwave power, can evolve into zero resistance states (ZRS) within specific ranges of magnetic field. Intriguingly, the zeros in the diagonal resistivity are not accompanied by plateaus in the Hall resistivity, which would be characteristic of a quantum Hall state. The first part of this thesis is devoted to the physics of these ZRS. We first examine the special case of bichromatic irradiation and show that the emergence of ZRS can be explained within a classical model. In addition, we predict interesting novel effects under bichromatic irradiation and present a way to parametrically excite the cyclotron mode by bichromatic irradiation. We argue that bichromatic irradiation can be used as a tool to verify absolute negative local conductivity, which lies at the center of the theoretical explanation of ZRS within a microscopic quantum mechanical model. We then present a microscopic theory for the recently discovered magnetooscillations for microwave frequencies smaller than the cyclotron frequency. We formulate a microscopic model which mimics the effect of a smooth random disorder potential by the introduction of a periodic modulation and calculate the conductivity under microwave irradiation. We are able to explain why no ZRS are observed in this intra-Landau-level regime and explain the experimentally observed suppression of Shubnikov-deHaas oscillations. We reproduce the sign of the photoconductvity, its magnetic field and frequency dependence as well as its filling factor dependence in excellent qualitative agreement with experiment. We also discuss the application of an in-plane magnetic field to a highmobility 2DEG under microwave irradiation, which has been demonstrated experimentally to induce a pronounced suppression or even destruction of the ZRS. We calculate the effect of a tilted magnetic field within a kinetic approach for spin-split Landau bands and estimate the relevance of Zeeman splitting for the suppression of the ZRS. The second part of this work is devoted to the physics of drag phenomena in bilayer quantum Hall systems at weak magnetic fields, more specifically to phonon drag, which, in contrast to the well-studied Coulomb drag, had not been understood within a microscopical theory. We develop the linear response theory for the phonon drag conductivity by extending an established approach for Coulomb drag. The main difference between Coulomb and phonon drag is due to the specific form of the phonon- mediated interlayer interaction, which, in contrast to the Coulomb interlayer interaction, allows for a larger range of momentum transfers between the layers of the bilayer system. We derive the phonon-mediated interlayer interaction in polar semiconductors such as GaAs and calculate the phonon contribution to the drag conductivity in the experimentally relevant regime. We finally present numerical results for the drag resistivity within a variety of parameter ranges.In den letzten Jahren hat die experimentelle Untersuchung von Quanten-Hall- Systemen in schwachen Magnetfeldern unerwartete und interessante Entdeckungen hervorgebracht. In dieser Doktorarbeit wenden wir uns den zwei interessantesten PhĂ€nomenen zu, die in Magnetotransportmessungen an solchen Systemen beobachtet werden: (i) den widerstandslosen ZustĂ€nden in mikrowellenbestrahlten, hochreinen Systemen und (ii) dem sog. "Drag"-Effekt (Zugeffekt) zwischen zueinander parallelen zweidimensionalen Elektronengasen (2DEG) in Doppelschichtsystemen. Der diagonale relative Widerstand eines 2DEG in einer hochreinen GaAs/ AlGaAs-Heterostruktur zeigt unter Bestrahlung mit Mikrowellen Magnetooszillationen, deren Minima fĂŒr genĂŒgend große Mikrowellenleistung innerhalb bestimmter Magnetfeldbereiche in widerstandslose ZustĂ€nde, sog. zero resistance states (ZRS), ĂŒbergehen können. Faszinierenderweise werden diese Nullstellen im diagonalen relativen Widerstand nicht von Plateaus im Hall-Widerstand begleitet, wie es fĂŒr Quanten-Hall-ZustĂ€nde charakteristisch wĂ€re. Der erste Teil dieser Arbeit widmet sich der Physik dieser ZRS. ZunĂ€chst untersuchen wir den Spezialfall bichromatischer Bestrahlung und zeigen, daß das Auftreten von ZRS im Rahmen eines klassischen Modells erklĂ€rt werden kann. Außerdem sagen wir interessante neuartige Effekte voraus, die bei bichromatischer Bestrahlung auftreten und stellen eine Methode vor, mit der die Zyklotronmode mittels bichromatischer Bestrahlung parametrisch angeregt werden kann. Wir zeigen, wie bichromatische Bestrahlung dazu benutzt werden kann, absolut negative LeitfĂ€higkeit nachzuweisen. Diese nimmt in der theoretischen Beschreibung der ZRS im Rahmen eines mikroskopischen quantenmechanischen Modells eine zentrale Rolle ein. Sodann entwickeln wir eine mikroskopische Theorie fĂŒr das kĂŒrzlich unter Bestrahlung mit Mikrowellenfrequenzen unterhalb der Zyklotronfrequenz entdeckte Auftreten von Magnetooszillationen. Wir formulieren ein mikroskopisches Modell, das den Effekt eines glatten Zufalls- Unordnungspotentials mittels einer periodischen Modulation nachahmt und berechnen den Leitwert unter Mikrowellenbestrahlung. Dies ermöglicht uns zu erklĂ€ren, warum fĂŒr dieses Intra- Landauniveau-Regime keine ZRS beobachtet werden und wie die experimentell beobachtete UnterdrĂŒckung der Shubnikov- deHaas-Oszillationen entsteht. Wir sind in der Lage, das Vorzeichen des Leitwerts, seine Magnetfeld- und FrequenzabhĂ€ngigkeit sowie den Zusammenhang mit dem FĂŒllfaktor in hervorragender qualitativer Übereinstimmung mit dem Experiment zu bestimmen. Zudem diskutieren wir den Einfluß eines zur Ebene des 2DEG parallelen Magnetfelds auf ein hochreines, mit Mikrowellen bestrahltes 2DEG. Experimentell beobachtet man in diesem Fall eine UnterdrĂŒckung oder gar Zerstörung der ZRS. Wir berechnen die Auswirkungen eines gekippten Magnetfeldes im Rahmen einer kinetischen Theorie spinaufgespaltener Landau- BĂ€nder und schĂ€tzen die Rolle der Zeeman-Aufspaltung fĂŒr die UnterdrĂŒckung der ZRS ab. Der zweite Teil dieser Arbeit befasst sich mit der Physik von Drag- PhĂ€nomenen in Doppelschicht-Quanten-Hall-Systemen bei schwachen Magnetfeldern. Genauer beschĂ€ftigen wir uns mit phononenvermitteltem Drag, der bislang im Gegensatz zum weitgehend verstandenen, durch Coulomb-Wechselwirkung vermittelten Drag noch nicht durch eine mikroskopische Theorie beschrieben werden konnte. Wir entwickeln die lineare Antworttheorie fĂŒr den Phonon- Drag- Leitwert, indem wir eine fĂŒr Coulomb-Drag bewĂ€hrte Herangehensweise erweitern. Der Hauptunterschied zwischen Coulomb-Drag und Phonon-Drag liegt in der spezifischen Form der phononenvermittelten Wechselwirkung zwischen den beiden Schichten. Im Gegensatz zur Coulomb-Wechselwirkung gestattet die phonenvermittelte Wechselwirkung einen grĂ¶ĂŸeren Bereich von ImpulsĂŒbertrĂ€gen zwischen den Schichten des Doppelschicht-Systems. Wir leiten die phononenvermittelte Wechselwirkung in polaren Halbleitern wie z.B. GaAs her und berechnen den phononenvermittelten Beitrag zum Drag-Leitwert im experimentell relevanten Parameterbereich. Abschließend stellen wir numerische Resultate fĂŒr den spezifischen Drag-Widerstand in einer Vielzahl weiterer Parameterbereiche vor

    A Journey, not a Destination—A Synthesized Process of Digital Transformation

    Get PDF
    Digital transformation (DT) continues to shake up firms and societies at large. Despite a growing number of studies covering a wide array of aspects of DT’s content, evidence of how DT unfolds in firms remains fragmented. Thus far, the literature has provided punctual insights into firms’ DT processes through single and multiple case studies. However, we lack a holistic understanding of the DT process. Adopting a qualitative meta-synthesis, we analyze 64 cases to inductively develop a DT process model depicting six phases (i.e., initiating, preparing, mobilizing, implementing, disseminating, and iterating). The process evolves on two levels—one rather sequential and one non-linear. We contribute to literature by introducing a synthesized process model tailored to DT’s complex nature. Besides, our model provides practitioners with a frame for assessing the progress of their DT journey and outlining a roadmap for their digital endeavor

    Geometric characterization of nodal domains: the area-to-perimeter ratio

    Full text link
    In an attempt to characterize the distribution of forms and shapes of nodal domains in wave functions, we define a geometric parameter - the ratio ρ\rho between the area of a domain and its perimeter, measured in units of the wavelength 1/E1/\sqrt{E}. We show that the distribution function P(ρ)P(\rho) can distinguish between domains in which the classical dynamics is regular or chaotic. For separable surfaces, we compute the limiting distribution, and show that it is supported by an interval, which is independent of the properties of the surface. In systems which are chaotic, or in random-waves, the area-to-perimeter distribution has substantially different features which we study numerically. We compare the features of the distribution for chaotic wave functions with the predictions of the percolation model to find agreement, but only for nodal domains which are big with respect to the wavelength scale. This work is also closely related to, and provides a new point of view on isoperimetric inequalities.Comment: 22 pages, 11 figure

    Adapting practice-based philosophy of science to teaching of science students

    Get PDF
    The “practice turn” in philosophy of science has strengthened the connections between philosophy and scientific practice. Apart from reinvigorating philosophy of science, this also increases the relevance of philosophical research for science, society, and science education. In this paper, we reflect on our extensive experience with teaching mandatory philosophy of science courses to science students from a range of programs at University of Copenhagen. We highlight some of the lessons we have learned in making philosophy of science “fit for teaching” outside of philosophy circles by taking selected cases from the students’ own field as the starting point. We argue for adapting philosophy of science teaching to particular audiences of science students, and discuss the benefits of drawing on research within science education to inform curriculum and course design. This involves reconsidering teaching resources, assumptions about students, intended learning outcomes, and teaching formats. We also argue that to make philosophy of science relevant and engaging to science students, it is important to consider their potential career trajectories. By anticipating future contexts and situations in which methodological, conceptual, and ethical questions could be relevant, philosophy of science can demonstrate its value in the education of science students

    Ideologies of time: How elite corporate actors engage the future

    Get PDF
    Our paper deals with how elite corporate actors in a Western capitalist-democratic society conceive of and prepare for the future. Paying attention to how senior officers of ten important Danish companies make sense of the future will help us to identify how particular temporal narratives are ideologically marked. This ideological dimension offers a common sense frame that is structured around a perceived inevitability of capitalism, a market economy as the basic organizational structure of the social and economic order, and an assumption of confident access to the future. Managers envisage their organization?s future and make plans for organizational action in a space where ?business as usual? reigns, and there is little engagement with the future as fundamentally open; as a time-yet-to-come. In using a conceptual lens inspired by the work of Fredric Jameson, we first explore the details of this presentism and a particular colonization of the future, and then linger over small disruptions in the narratives of our interviewees which point to what escapes or jars their common sense frame, explore the implicit meanings they assign to their agency, and also find clues and traces of temporal actions and strategies in their narratives that point to a subtly different engagement with time

    Random-phase approximation and its applications in computational chemistry and materials science

    Full text link
    The random-phase approximation (RPA) as an approach for computing the electronic correlation energy is reviewed. After a brief account of its basic concept and historical development, the paper is devoted to the theoretical formulations of RPA, and its applications to realistic systems. With several illustrating applications, we discuss the implications of RPA for computational chemistry and materials science. The computational cost of RPA is also addressed which is critical for its widespread use in future applications. In addition, current correction schemes going beyond RPA and directions of further development will be discussed.Comment: 25 pages, 11 figures, published online in J. Mater. Sci. (2012

    “Dar uma Zoada”, “Botar a Maior Marra”: Dispositivos Morais de Jocosidade como Formas de Efetivação e sua Relação com a Crítica

    Full text link
    • 

    corecore