8,976 research outputs found

    Groupoid Quantization of Loop Spaces

    Full text link
    We review the various contexts in which quantized 2-plectic manifolds are expected to appear within closed string theory and M-theory. We then discuss how the quantization of a 2-plectic manifold can be reduced to ordinary quantization of its loop space, which is a symplectic manifold. We demonstrate how the latter can be quantized using groupoids. After reviewing the necessary background, we present the groupoid quantization of the loop space of R^3 in some detail.Comment: 19 pages, Proceedings of the Corfu Summer Institute 2011 - School and Workshops on Elementary Particle Physics and Gravity, September 4-18, 2011, Corfu, Greec

    Branes, Quantization and Fuzzy Spheres

    Full text link
    We propose generalized quantization axioms for Nambu-Poisson manifolds, which allow for a geometric interpretation of n-Lie algebras and their enveloping algebras. We illustrate these axioms by describing extensions of Berezin-Toeplitz quantization to produce various examples of quantum spaces of relevance to the dynamics of M-branes, such as fuzzy spheres in diverse dimensions. We briefly describe preliminary steps towards making the notion of quantized 2-plectic manifolds rigorous by extending the groupoid approach to quantization of symplectic manifolds.Comment: 18 pages; Based on Review Talk at the Workshop on "Noncommutative Field Theory and Gravity", Corfu Summer Institute on Elementary Particles and Physics, September 8-12, 2010, Corfu, Greece; to be published in Proceedings of Scienc

    The 2-Hilbert Space of a Prequantum Bundle Gerbe

    Full text link
    We construct a prequantum 2-Hilbert space for any line bundle gerbe whose Dixmier-Douady class is torsion. Analogously to usual prequantisation, this 2-Hilbert space has the category of sections of the line bundle gerbe as its underlying 2-vector space. These sections are obtained as certain morphism categories in Waldorf's version of the 2-category of line bundle gerbes. We show that these morphism categories carry a monoidal structure under which they are semisimple and abelian. We introduce a dual functor on the sections, which yields a closed structure on the morphisms between bundle gerbes and turns the category of sections into a 2-Hilbert space. We discuss how these 2-Hilbert spaces fit various expectations from higher prequantisation. We then extend the transgression functor to the full 2-category of bundle gerbes and demonstrate its compatibility with the additional structures introduced. We discuss various aspects of Kostant-Souriau prequantisation in this setting, including its dimensional reduction to ordinary prequantisation.Comment: 97 pages; v2: minor changes; Final version to be published in Reviews in Mathematical Physic

    Lightning Imaging Sensor (LIS) for the Earth Observing System

    Get PDF
    Not only are scientific objectives and instrument characteristics given of a calibrated optical LIS for the EOS but also for the Tropical Rainfall Measuring Mission (TRMM) which was designed to acquire and study the distribution and variability of total lightning on a global basis. The LIS can be traced to a lightning mapper sensor planned for flight on the GOES meteorological satellites. The LIS consists of a staring imager optimized to detect and locate lightning. The LIS will detect and locate lightning with storm scale resolution (i.e., 5 to 10 km) over a large region of the Earth's surface along the orbital track of the satellite, mark the time of occurrence of the lightning, and measure the radiant energy. The LIS will have a nearly uniform 90 pct. detection efficiency within the area viewed by the sensor, and will detect intracloud and cloud-to-ground discharges during day and night conditions. Also, the LIS will monitor individual storms and storm systems long enough to obtain a measure of the lightning flashing rate when they are within the field of view of the LIS. The LIS attributes include low cost, low weight and power, low data rate, and important science. The LIS will study the hydrological cycle, general circulation and sea surface temperature variations, along with examinations of the electrical coupling of thunderstorms with the ionosphere and magnetosphere, and observations and modeling of the global electric circuit

    Cheeger-Simons differential characters with compact support and Pontryagin duality

    Get PDF
    By adapting the Cheeger-Simons approach to differential cohomology, we establish a notion of differential cohomology with compact support. We show that it is functorial with respect to open embeddings and that it fits into a natural diagram of exact sequences which compare it to compactly supported singular cohomology and differential forms with compact support, in full analogy to ordinary differential cohomology. We prove an excision theorem for differential cohomology using a suitable relative version. Furthermore, we use our model to give an independent proof of Pontryagin duality for differential cohomology recovering a result of [Harvey, Lawson, Zweck - Amer. J. Math. 125 (2003) 791]: On any oriented manifold, ordinary differential cohomology is isomorphic to the smooth Pontryagin dual of compactly supported differential cohomology. For manifolds of finite-type, a similar result is obtained interchanging ordinary with compactly supported differential cohomology.Comment: 33 pages, no figures - v3: Final version to be published in Communications in Analysis and Geometr

    Quantized Nambu-Poisson Manifolds and n-Lie Algebras

    Full text link
    We investigate the geometric interpretation of quantized Nambu-Poisson structures in terms of noncommutative geometries. We describe an extension of the usual axioms of quantization in which classical Nambu-Poisson structures are translated to n-Lie algebras at quantum level. We demonstrate that this generalized procedure matches an extension of Berezin-Toeplitz quantization yielding quantized spheres, hyperboloids, and superspheres. The extended Berezin quantization of spheres is closely related to a deformation quantization of n-Lie algebras, as well as the approach based on harmonic analysis. We find an interpretation of Nambu-Heisenberg n-Lie algebras in terms of foliations of R^n by fuzzy spheres, fuzzy hyperboloids, and noncommutative hyperplanes. Some applications to the quantum geometry of branes in M-theory are also briefly discussed.Comment: 43 pages, minor corrections, presentation improved, references adde

    Responses From the Field

    Get PDF

    Differential cohomology and locally covariant quantum field theory

    Get PDF
    We study differential cohomology on categories of globally hyperbolic Lorentzian manifolds. The Lorentzian metric allows us to define a natural transformation whose kernel generalizes Maxwell's equations and fits into a restriction of the fundamental exact sequences of differential cohomology. We consider smooth Pontryagin duals of differential cohomology groups, which are subgroups of the character groups. We prove that these groups fit into smooth duals of the fundamental exact sequences of differential cohomology and equip them with a natural presymplectic structure derived from a generalized Maxwell Lagrangian. The resulting presymplectic Abelian groups are quantized using the CCR-functor, which yields a covariant functor from our categories of globally hyperbolic Lorentzian manifolds to the category of C*-algebras. We prove that this functor satisfies the causality and time-slice axioms of locally covariant quantum field theory, but that it violates the locality axiom. We show that this violation is precisely due to the fact that our functor has topological subfunctors describing the Pontryagin duals of certain singular cohomology groups. As a byproduct, we develop a Fr\'echet-Lie group structure on differential cohomology groups
    • …
    corecore