5 research outputs found

    Recombinant BCG Vaccines Reduce Pneumovirus-Caused Airway Pathology by Inducing Protective Humoral Immunity

    Get PDF
    The Human Respiratory Syncytial Virus (hRSV) and the Human Metapneumovirus (hMPV) are two pneumoviruses that are leading agents causing acute lower respiratory tract infections (ALRTIs) affecting young infants, the elderly, and immunocompromised patients worldwide. Since these pathogens were first discovered, many approaches for the licensing of safe and effective vaccines have been explored being unsuccessful to date. We have previously described that immunization with recombinant strains of Mycobacterium bovis Bacillus Calmette-Guérin (rBCG) expressing the hRSV nucleoprotein (rBCG-N) or the hMPV phosphoprotein (rBCG-P) induced immune protection against each respective virus. These vaccines efficiently promoted viral clearance without significant lung damage, mainly through the induction of a T helper 1 cellular immunity. Here we show that upon viral challenge, rBCG-immunized mice developed a protective humoral immunity, characterized by production of antibodies specific for most hRSV and hMPV proteins. Further, isotype switching from IgG1 to IgG2a was observed in mice immunized with rBCG vaccines and correlated with an increased viral clearance, as compared to unimmunized animals. Finally, sera obtained from animals immunized with rBCG vaccines and infected with their respective viruses exhibited virus neutralizing capacity and protected naïve mice from viral replication and pulmonary disease. These results support the notion that the use of rBCG strains could be considered as an effective vaccination approach against other respiratory viruses with similar biology as hRSV and hMPV

    The 5’ untranslated region of the anti-apoptotic protein Survivin contains an inhibitory upstream AUG codon

    No full text
    Survivin (BIRC5) is an anti-apoptotic protein that is important in cancer. Mechanisms responsible for controlling Survivin levels in cells include transcriptional regulation and modulation of protein stability via post-translational modifications; however to date, translational control has been poorly studied. Here, we focused particularly on the primary control elements present in the Survivin 5' untranslated region (5'UTR). Bioinformatic analysis of ribosome occupancy on the Survivin 5'UTR revealed the presence of elongating ribosomes upstream of the canonical initiator AUG, suggesting an alternative upstream initiator AUG (uAUG) might exist. This uAUG was found out-of-frame at position -71 and appeared as a conserved element in mammals. RACE analysis revealed different transcriptional start sites for BIRC5, which indicated that translational control by this uAUG is restricted to longer 5'UTR variants. We studied the activity of the uAUG in different cell types by cloning the Survivin 5'UTR DNA sequence (wild-type and mutated variants) upstream of renilla luciferase (RLuc) into a pcDNA3 plasmid. Changes in RLuc activity were determined by luminescence assays and Western blotting. Results showed that when this uAUG was mutated to AUU or AGG in the cloned Survivin 5'UTR, RLuc activity was significantly increased. Similar results were obtained when uAUG was positioned inframe with the RLuc initiator AUG. Immunodetection of Renilla (35 kDa) by Western blotting revealed the presence of a second band (37 kDa approximately) in cells transfected with the Inframe reporter constructs, indicating that the uAUG was functional in our experimental conditions. In conclusion, our experimental data demonstrate the presence of an alternative and inhibitory initiator uAUG in the Survivin 5' UTR. This inhibitory uAUG may help understanding how Survivin expression is downregulated under physiological or pathological conditions.Comisión Nacional de Investigación Cientifica y Tecnológica of Chile (Conicyt) Comisión Nacional de Investigación Cientifica y Tecnológica (CONICYT) CONICYT FONDECYT 1171615 1170925 Comisión Nacional de Investigación Cientifica y Tecnológica (CONICYT) CONICYT FONDAP 1513001
    corecore