8,441 research outputs found

    Interaction of light with a single atom in the strong focusing regime

    Full text link
    We consider the near-resonant interaction between a single atom and a focused light mode, where a single atom localized at the focus of a lens can scatter a significant fraction of light. Complementary to previous experiments on extinction and phase shift effects of a single atom, we report here on the measurement of coherently backscattered light. The strength of the observed effect suggests combining strong focusing with the well-established methods of cavity QED. We consider theoretically a nearly concentric cavity, which should allow for a strongly focused optical mode. Simple estimates show that in a such case one can expect a significant single photon Rabi frequency. This opens new perspectives and a possibility to scale up the system consisting of many atom+cavity nodes for quantum networking due to a significant technical simplification of the atom--light interfaces.Comment: 7 pages, 6 figures, followup of workshop "Single photon technologies" in Boulder, CO, 200

    Alternative Solution of the Path Integral for the Radial Coulomb Problem

    Get PDF
    In this Letter I present an alternative solution of the path integral for the radial Coulomb problem which is based on a two-dimensional singular version of the Levi-Civita transformation.Comment: 7 pages, Late

    Neurostimulation Reveals Context-Dependent Arbitration Between Model-Based and Model-Free Reinforcement Learning

    Get PDF
    While it is established that humans use model-based (MB) and model-free (MF) reinforcement learning in a complementary fashion, much less is known about how the brain determines which of these systems should control behavior at any given moment. Here we provide causal evidence for a neural mechanism that acts as a context-dependent arbitrator between both systems. We applied excitatory and inhibitory transcranial direct current stimulation over a region of the left ventrolateral prefrontal cortex previously found to encode the reliability of both learning systems. The opposing neural interventions resulted in a bidirectional shift of control between MB and MF learning. Stimulation also affected the sensitivity of the arbitration mechanism itself, as it changed how often subjects switched between the dominant system over time. Both of these effects depended on varying task contexts that either favored MB or MF control, indicating that this arbitration mechanism is not context-invariant but flexibly incorporates information about current environmental demands

    Neurostimulation reveals context-dependent arbitration between model-based and model-free reinforcement learning

    Full text link
    While it is established that humans use model-based (MB) and model-free (MF) reinforcement learning in a complementary fashion, much less is known about how the brain determines which of these systems should control behavior at any given moment. Here we provide causal evidence for a neural mechanism that acts as a context-dependent arbitrator between both systems. We applied excitatory and inhibitory transcranial direct current stimulation over a region of the left ventrolateral prefrontal cortex previously found to encode the reliability of both learning systems. The opposing neural interventions resulted in a bidirectional shift of control between MB and MF learning. Stimulation also affected the sensitivity of the arbitration mechanism itself, as it changed how often subjects switched between the dominant system over time. Both of these effects depended on varying task contexts that either favored MB or MF control, indicating that this arbitration mechanism is not context-invariant but flexibly incorporates information about current environmental demands

    Lower Limb Venous Compliance is Different Between Men and Women Following 60 Days of Head-Down Bedrest but Is Not Associated with Venoconstriction Dysfunction

    Get PDF
    Space flight-induced orthostatic intolerance (OI) is more prevalent in female (F) than male (M) astronauts. The mechanisms explaining the higher incidence of OI in F are unclear. We tested the hypothesis that venous compliance would be higher in F more than M following 6 deg head-down bed rest (BR) and would be associated with constrictor dysfunction. Using 2-D ultrasound, dorsal hand (DHV) and dorsal foot (DFV) vein compliances were determined in 24 subjects (10 F, 14 M; 35 +/- 1 yr) by measuring mean diameter response to increasing congestion pressure (0, 20, 30, and 40 mmHg) before and after 60 d of BR. Constrictor function was assessed by intravenous infusions of Ketorolac (KE; 1.5 ig/min) Phenylephrine (PE; 3160 ng/min), and L-NMMA (50 ig/min). The effects of BR between F vs. M and hand vs. foot were determined using mixed-effects linear regression. DFV but not DHV compliance changed in response to BR (p=0.012). Mean DFV increased significantly (0.903 mm to 1.191mm) in F but decreased in M (1.353 mm to 1.154 mm). DFV constrictor response was not different between sexes in response to BR (KE; p=0.647, PE; p=0.717, and L-NMMA; p=0.825). These BR data suggest that the higher incidence of OI in F astronauts may be related to increased lower limb venous compliance, contributing to blood pooling upon standing. Notably, changes to DFV compliance was not accompanied by impaired constrictor function

    Maximum Entropy for Gravitational Wave Data Analysis: Inferring the Physical Parameters of Core-Collapse Supernovae

    Full text link
    The gravitational wave signal arising from the collapsing iron core of a Type II supernova progenitor star carries with it the imprint of the progenitor's mass, rotation rate, degree of differential rotation, and the bounce depth. Here, we show how to infer the gravitational radiation waveform of a core collapse event from noisy observations in a network of two or more LIGO-like gravitational wave detectors and, from the recovered signal, constrain these source properties. Using these techniques, predictions from recent core collapse modeling efforts, and the LIGO performance during its S4 science run, we also show that gravitational wave observations by LIGO might have been sufficient to provide reasonable estimates of the progenitor mass, angular momentum and differential angular momentum, and depth of the core at bounce, for a rotating core collapse event at a distance of a few kpc.Comment: 44 pages, 12 figures; accepted version scheduled to appear in Ap J 1 April 200

    How does conformational flexibility influence key structural features involved in activation of anaplastic lymphoma kinase?

    Get PDF
    Anaplastic Lymphoma Kinase (ALK) plays a major role in developing tumor processes and therefore has emerged as a validated therapeutic target. Applying atomistic molecular dynamics simulations on the wild type enzyme and the nine most frequently occurring and clinically important activation mutants we revealed important conformational effects on key interactions responsible for the activation of the enzyme
    corecore