127 research outputs found

    Labour Supply Effects of an Early Retirement Programme

    Get PDF
    In 1988, an early retirement program (AFP) was introduced in Norway for the 66-years-old. Since then, AFP has gradually been extended and by now it covers workers aged 62-66. In this paper we employ a multinominal logit model to study the transition between states in the labour market. The model is estimated on a large panel data set covering the period 1988-2 to 1999-4. The estimated model tracks the development quite well, as also outside sample predictions do. The model is used to assess the future labour market impact of abolishing AFP. We find that by abolishing AFP may increase the labour force participation among older men (55-67) in 2005 from 72 percent in the baseline projection to 83 percent. For females the corresponding increase is from 62 to 67 percent.Early retirement, large panel data sets, econometric models

    Interplay between chemistry and dynamics in embedded protostellar disks

    Get PDF
    Context. A fundamental part of the study of star formation is to place young stellar objects in an evolutionary sequence. Establishing a robust evolutionary classification scheme allows us not only to understand how the Sun was born but also to predict what kind of main sequence star a given protostar will become. Traditionally, low-mass young stellar objects are classified according to the shape of their spectral energy distributions. Such methods are, however, prone to misclassification due to degeneracy and do not constrain the temporal evolution. More recently, young stellar objects have been classified based on envelope, disk, and stellar masses determined from resolved images of their continuum and line emission at submillimeter wavelengths. Aims. Through detailed modeling of two Class I sources, we aim at determining accurate velocity profiles and explore the role of freeze-out chemistry in such objects. Methods. We present new Submillimeter Array observations of the continuum and HCO+ line emission at 1.1 mm toward two protostars, IRS 63 and IRS 43 in the Ophiuchus star forming region. The sources were modeled in detail using dust radiation transfer to fit the SED and continuum images and line radiation transfer to produce synthetic position-velocity diagrams. We used a χ2 search algorithm to find the best model fit to the data and to estimate the errors in the model variables. Results. Our best fit models present disk, envelope, and stellar masses, as well as the HCO+ abundance and inclination of both sources. We also identify a ring structure with a radius of about 200 AU in IRS 63. Conclusions. We find that freeze-out chemistry is important in IRS 63 but not for IRS 43. We show that the velocity field in IRS 43 is consistent with Keplerian rotation. Owing to molecular depletion, it is not possible to draw a similar conclusion for IRS 63. We identify a ring-shaped structure in IRS 63 on the same spatial scale as the disk outer radius. No such structure is seen in IRS 43

    Non-parametric identification of the mixed hazards model with interval-censored durations

    Get PDF
    Abstract: Econometric duration data are typically interval-censored, that is, not directly observed, but observed to fall within a known interval. Known non-parametric identification results for duration models with unobserved heterogeneity rely crucially on exact observation of durations at a continuous scale. Here, it is established that the mixed hazards model is non-parametrically identified through covariates that vary over time within durations as well as between observations when durations are interval-censored. The results hold for the mixed proportional hazards model as a special case. Keywords: duration analysis, interval-censoring, non-parametric identificatio

    Simulated maximum likelihood using tilted importance sampling

    Get PDF
    Abstract: This paper develops the important distinction between tilted and simple importance sampling as methods for simulating likelihood functions for use in simulated maximum likelihood. It is shown that tilted importance sampling removes a lower bound to simulation error for given importance sample size that is inherent in simulated maximum likelihood using simple importance sampling, the main method for simulating likelihood functions in the statistics literature. In addition, a new importance sampling technique, generalized Laplace importance sampling, easily combined with tilted importance sampling, is introduced. A number of applications and Monte Carlo experiments demonstrate the power and applicability of the methods. As an example, simulated maximum likelihood estimates from the infamous salamander mating model from McCullagh and Nelder (1989) can be found to easily satisfactory precision with an importance sample size of 100. Keywords: Simulation based estimation, importance sampling

    SImulator of GAlaxy Millimetre/submillimetre Emission (SIGAME): CO emission from massive z=2 main-sequence galaxies

    Get PDF
    We present SIGAME (SImulator of GAlaxy Millimetre/submillimetre Emission), a new numerical code designed to simulate the 12CO rotational line emission spectrum of galaxies. Using sub-grid physics recipes to post-process the outputs of smoothed particle hydrodynamics (SPH) simulations, a molecular gas phase is condensed out of the hot and partly ionized SPH gas. The gas is subjected to far-UV radiation fields and cosmic ray ionization rates which are set to scale with the local star formation rate volume density. Level populations and radiative transport of the CO lines are solved with the 3-D radiative transfer code LIME. We have applied SIGAME to cosmological SPH simulations of three disc galaxies at z=2 with stellar masses in the range ~(0.5-2)x10^11 Msun and star formation rates ~40-140 Msun/yr. Global CO luminosities and line ratios are in agreement with observations of disc galaxies at z~2 up to and including J=3-2 but falling short of the few existing J=5-4 observations. The central 5 kpc regions of our galaxies have CO 3-2/1-0 and 7-6/1-0 brightness temperature ratios of ~0.55-0.65 and ~0.02-0.08, respectively, while further out in the disc the ratios drop to more quiescent values of ~0.5 and <0.01. Global CO-to-H2 conversion (alpha_CO) factors are ~=1.5 Msun*pc^2/(K km s/1), i.e. ~2-3 times below typically adopted values for disc galaxies, and alpha_CO increases with radius, in agreement with observations of nearby galaxies. Adopting a top-heavy Giant Molecular Cloud (GMC) mass spectrum does not significantly change the results. Steepening the GMC density profile leads to higher global line ratios for J_up>=3 and CO-to-H2 conversion factors [~=3.6 Msun*pc^2/(K km/s)].Comment: 28 pages, 20 figures. Accepted for Publication in MNRAS. Substantial revisions from the previous version, including tests with model galaxies similar to the Milky Way. Improved figures and added table

    Dynamical structure of the inner 100 AU of the deeply embedded protostar IRAS 16293-2422

    Full text link
    A fundamental question about the early evolution of low-mass protostars is when circumstellar disks may form. High angular resolution observations of molecular transitions in the (sub)millimeter wavelength windows make it possible to investigate the kinematics of the gas around newly-formed stars, for example to identify the presence of rotation and infall. IRAS 16293-2422 was observed with the extended Submillimeter Array (eSMA) resulting in subarcsecond resolution (0.46" x 0.29", i.e. \sim 55 ×\times 35~AU) images of compact emission from the C17^{17}O (3-2) and C34^{34}S (7-6) transitions at 337~GHz (0.89~mm). To recover the more extended emission we have combined the eSMA data with SMA observations of the same molecules. The emission of C17^{17}O (3-2) and C34^{34}S (7-6) both show a velocity gradient oriented along a northeast-southwest direction with respect to the continuum marking the location of one of the components of the binary, IRAS16293A. Our combined eSMA and SMA observations show that the velocity field on the 50--400~AU scales is consistent with a rotating structure. It cannot be explained by simple Keplerian rotation around a single point mass but rather needs to take into account the enclosed envelope mass at the radii where the observed lines are excited. We suggest that IRAS 16293-2422 could be among the best candidates to observe a pseudo-disk with future high angular resolution observations.Comment: Accepted for publication in ApJ, 18 pages, 10 figure

    Descriptive analysis of preschool physical activity and sedentary behaviors - a cross sectional study of 3-year-olds nested in the SKOT cohort

    Get PDF
    Abstract Background Further collection of surveillance data is warranted, particularly in preschool populations, for optimizing future public health promotion strategies. This study aims to describe physical activity (PA) and sedentary behavior (SB) across different settings, including time in and out of daycare, and to determine the proportion of children complying with suggested PA recommendations in a high income country. Methods Valid PA was assessed in 231 children (36.4 ± 1.1 months) with the Actigraph GT3X accelerometer, and information regarding date and time of dropping-off/picking-up children in daycare was provided by parents. Mean total PA (i.e., counts per minute (CPM)), moderate-to-vigorous physical activity (MVPA), SB time, and non-SB time was generated and compared across settings. Post hoc, PA and SB were examined in subgroups of low-active (1st quartile) and high-active (4th quartile) children. Results Overall, boys and girls spent 1.4 ± 0.3 h/day and 1.2 ± 0.4 h/day in MVPA, respectively. Likewise, boys and girls accumulated 6.7 ± 0.8 h and 6.8 ± 0.9 h of SB time per day, respectively. Higher PA levels consistently co-occurred with lower SB time in the daycare setting. Girls accumulated less SB time in daycare than before and after daycare (β = −12.2%, p < 0.001 & β = −3.8%, p < 0.001, respectively). In boys, daycare-days contained more PA and less SB than non-daycare-days (CPM: β =29, p = 0.046, %MVPA: β = 0.83, p = 0.007, %SB: β = −2.3, p < 0.001, respectively). All children fulfilled recommendations of at least 3 h of daily non-SB. Eighty-nine percent of boys and 72% of girls met the daily 1-h MVPA recommendation for 5 year-olds. Lower proportions of children, especially boys, fulfilled MVPA recommendation on days with no daycare attendance. Generally, large mean differences in MVPA and SB were observed across all settings between the most active and the least active children, and only 7% of the low-active girls and 59% of the low-active boys fulfilled MVPA recommendations. Conclusions Overall, the majority of children fulfilled MVPA guidelines for 5 year-olds, and all children complied with suggested recommendations of 180 min of daily activity. Daycare time was found to represent an important setting for PA. Substantial and consistent differences observed in the amount of time spent physically active between high- and low-active children across all settings indicate substantial variations in young children’s PA levels irrespective of the context

    Adaptable Radiative Transfer Innovations for Submillimeter Telescopes (ARTIST)

    Full text link
    Submillimeter observations are a key for answering many of the big questions in modern-day astrophysics, such as how stars and planets form, how galaxies evolve, and how material cycles through stars and the interstellar medium. With the upcoming large submillimeter facilities ALMA and Herschel a new window will open to study these questions. ARTIST is a project funded in context of the European ASTRONET program with the aim of developing a next generation model suite for comprehensive multi-dimensional radiative transfer calculations of the dust and line emission, as well as their polarization, to help interpret observations with these groundbreaking facilities.Comment: 4 pages, 1 figure; to appear in "IAU Symposium 270: Computational Star formation", Eds. J. Alves, B. Elmegreen, J. Girart, V. Trimbl

    Dimethyl ether in its ground state, v=0, and lowest two torsionally excited states, v11=1 and v15=1, in the high-mass star-forming region G327.3-0.6

    Full text link
    The goal of this paper is to determine the respective importance of solid state vs. gas phase reactions for the formation of dimethyl ether. This is done by a detailed analysis of the excitation properties of the ground state and the torsionally excited states, v11=1 and v15=1, toward the high-mass star-forming region G327.3-0.6. With the Atacama Pathfinder EXperiment 12 m submillimeter telescope, we performed a spectral line survey. The observed spectrum is modeled assuming local thermal equilibrium. CH3OCH3 has been detected in the ground state, and in the torsionally excited states v11=1 and v15=1, for which lines have been detected here for the first time. The emission is modeled with an isothermal source structure as well as with a non-uniform spherical structure. For non-uniform source models one abundance jump for dimethyl ether is sufficient to fit the emission, but two components are needed for the isothermal models. This suggests that dimethyl ether is present in an extended region of the envelope and traces a non-uniform density and temperature structure. Both types of models furthermore suggest that most dimethyl ether is present in gas that is warmer than 100 K, but a smaller fraction of 5%-28% is present at temperatures between 70 and 100 K. The dimethyl ether present in this cooler gas is likely formed in the solid state, while gas phase formation probably is dominant above 100 K. Finally, the v11=1 and v15=1 torsionally excited states are easily excited under the density and temperature conditions in G327.3-0.6 and will thus very likely be detectable in other hot cores as well.Comment: 12 pages (excluding appendices), 8 figures, A&A in pres

    A recent accretion burst in the low-mass protostar IRAS 15398-3359: ALMA imaging of its related chemistry

    Full text link
    Low-mass protostars have been suggested to show highly variable accretion rates through-out their evolution. Such changes in accretion, and related heating of their ambient envelopes, may trigger significant chemical variations on different spatial scales and from source-to-source. We present images of emission from C17O, H13CO+, CH3OH, C34S and C2H toward the low-mass protostar IRAS 15398-3359 on 0.5" (75 AU diameter) scales with the Atacama Large Millimeter/submillimeter Array (ALMA) at 340 GHz. The resolved images show that the emission from H13CO+ is only present in a ring-like structure with a radius of about 1-1.5" (150-200 AU) whereas the CO and other high dipole moment molecules are centrally condensed toward the location of the central protostar. We propose that HCO+ is destroyed by water vapor present on small scales. The origin of this water vapor is likely an accretion burst during the last 100-1000 years increasing the luminosity of IRAS 15398-3359 by a factor of 100 above its current luminosity. Such a burst in luminosity can also explain the centrally condensed CH3OH and extended warm carbon-chain chemistry observed in this source and furthermore be reflected in the relative faintness of its compact continuum emission compared to other protostars.Comment: Accepted for publication in ApJ Letters; 14 pages, 5 figure
    corecore