20 research outputs found

    Rôle des cellules endothéliales dans l’immunité innée précoce induite lors d’infections par des coronavirus murins

    Get PDF
    Les cellules endothéliales (EC) constituent une première barrière physique à la dissémination de virus pléiotropiques circulant par voie hématogène mais leur contribution à la défense innée anti-virale est peu connue. Des dysfonctions des EC de la barrière hémato-encéphalique (BMEC) et des sinusoïdes hépatiques (LSEC) ont été rapportées dans des neuropathologies et des hépatites aiguës ou chroniques d’origine virale, suggérant que des atteintes à leur intégrité contribuent à la pathogenèse. Les sérotypes de coronavirus de l’hépatite murine (MHV), se différenciant par leur capacité à induire des hépatites et des maladies neurologiques de sévérité variable et/ou leur tropisme pour les EC, représentent des modèles viraux privilégiés pour déterminer les conséquences de l’infection des EC sur la pathogenèse virale. Lors d’infection par voie hématogène, le sérotype MHV3, le plus virulent des MHV, induit une hépatite fulminante, caractérisée par une réponse inflammatoire sévère, et des lésions neurologiques secondaires alors que le sérotype moins virulent, MHV-A59, induit une hépatite modérée sans atteintes secondaires du système nerveux central (SNC). Par ailleurs, le sérotype MHV3, à la différence du MHV-A59, démontre une capacité à stimuler la production de cytokines par la voie TLR2. Les variants atténués du MHV3, les virus 51.6-MHV3 et YAC-MHV3, sont caractérisés par un faible tropisme pour les LSEC et induisent respectivement une hépatite modérée et subclinique. Compte tenu de l’importance des LSEC dans le maintien de la tolérance hépatique et de l’élimination des pathogènes circulants, il a été postulé que la sévérité de l’hépatite et de la réponse inflammatoire lors d’infections par les MHV est associée à la réplication virale et à l’altération des propriétés tolérogéniques et vasculaires des LSEC. Les désordres inflammatoires hépatiques pourraient résulter d’une activation différentielle du TLR2, plutôt que des autres TLR et des hélicases, selon les sérotypes. D’autre part, compte tenu du rôle des BMEC dans la prévention des infections du SNC, il a été postulé que l’invasion cérébrale secondaire par les coronavirus est reliée à l’infection des BMEC et le bris subséquent de la barrière hémato-encéphalique (BHE). À l’aide d’infections in vivo et in vitro par les différents sérotypes MHV, chez des souris ou des cultures de BMEC et de LSEC, nous avons démontré, d’une part, que l’infection in vitro des LSEC par le sétotype MHV3, à la différence des variants 51.6- et YAC-MHV3, altérait la production du facteur vasodilatant NO et renversait leur phénotype tolérogénique en favorisant la production de cytokines et de chimiokines inflammatoires. Ces dysfonctions se traduisaient in vivo par une réponse inflammatoire incontrôlée et une dérégulation du recrutement intrahépatique de leucocytes, favorisant la réplication virale et les dommages hépatiques. Nous avons aussi démontré, à l’aide de souris TLR2 KO et de LSEC dont l’expression du TLR2 a été abrogée par des siRNA, que la sévérité de l’hépatite et de la réponse inflammatoire induite par le sérotype MHV3, dépendait en partie de l’induction et de l’activation préférentielle du TLR2 par le virus dans le foie. D’autre part, la sévérité de la réplication virale au foie et des désordres dans le recrutement leucocytaire intrahépatique induits par le MHV3, et non par le MHV-A59 et le 51.6-MHV3, corrélaient avec une invasion virale subséquente du SNC, au niveau de la BHE. Nous avons démontré que l’invasion cérébrale du MHV3 était associée à une infection productive des BMEC et l’altération subséquente des protéines de jonctions serrées occludine, VE-cadhérine et ZO-1 se traduisant par une augmentation de la perméabilité de la BHE et l’entrée consécutive du virus dans le cerveau. Dans l’ensemble, les résultats de cette étude mettent en lumière l’importance du maintien de l’intégrité structurale et fonctionnelle des LSEC et des BMEC lors d’infections virales aigües par des MHV afin de limiter les dommages hépatiques associés à l’induction d’une réponse inflammatoire exagérée et de prévenir le passage des virus au cerveau suite à une dissémination par voie hématogène. Ils révèlent en outre un nouveau rôle aggravant pour le TLR2 dans l’évolution de l’hépatite virale aigüe ouvrant la voie à de nouvelles avenues thérapeutiques visant à moduler l’activité inflammatoire du TLR2.Endothelial cells (EC) act as a physical barrier against invasion by pleiotropic blood borne viruses but their contribution in innate antiviral defense is poorly known. Dysfunctions in blood-brain barrier EC (BMECs) and liver sinusoidal EC (LSECs) have been reported in viral neuropathologies and hepatitis, suggesting that loss of ECs integrity may contribute to the pathogenesis. Mouse hepatitis coronaviruses (MHV), differing in their ability to induce severe to subclinical hepatitis and neurological diseases and / or their tropism for ECs, are relevant viral models to study the consequences of EC infection in viral pathogenesis. Following hematogenous infection, the MHV3 serotype, the most virulent MHV, induces fulminant hepatitis, characterized by severe inflammatory response, followed by neurological damage whereas the less virulent MHV-A59 serotype induces milder hepatitis but does not invade the central nervous system (CNS). In addition, MHV3, in contrast to MHV-A59, shows ability to induce TLR2-dependent cytokine response. The attenuated MHV3 variants, 51.6-MHV3 and YAC-MHV3, are characterized by a weak tropism for LSECs and induce moderated and subclinical hepatitis respectively. Given the importance of LSECs in hepatic tolerance and the elimination of circulating pathogens, it has been postulated that the severity of hepatitis and inflammatory response induced by MHVs correlates with infection and alterations in vascular and tolerogenic properties of LSECs. Hepatic inflammatory disorders may result from differential activation of TLR2, rather than other TLRs and helicases, according to serotypes. Moreover, given the role of BMECs in preventing CNS infections, it has been postulated that secondary cerebral invasion by coronaviruses is related to infection of BMECs and subsequent breakdown of the blood-brain barrier (BBB). Through in vitro and in vivo infections of isolated BMECs, LSECs or mice with the different MHVs, we demonstrated, first, that in vitro productive infection of LSECs by the highly virulent MHV3 serotype, in contrast to 51.6- et YAC-MHV3 variants, altered their production of vasoactive factors and overthrew their intrinsic tolerogenic properties by promoting inflammatory cytokines and chemokines production. These disturbances were reflected in vivo by an uncontrolled inflammatory response and a deregulation of intrahepatic leukocyte recruitment, favoring viral replication and liver damages. We demonstrated, using TLR2 KO mice and LSECs treated with siRNA for TLR2 that the abnormal inflammatory response induced by MHV3 depended in part on preferential induction and activation of TLR2 by the virus on the surface of hepatic cells. Moreover, the severity of the primary viral replication in the liver and disorders in intrahepatic leucocyte recruitment induced by MHV3, but not by MHV-A59 and 51.6-MHV3, correlated with a subsequent brain invasion at the BBB level. Such invasion was related to productive infection of BMECs and subsequent IFN--dependent disruption of tight junction proteins occludin, VE-cadherin and ZO-1, resulting in an increase of BBB permeability and further viral entry into the CNS. Overall, the results of this study highlight the importance of structural and functional integrity of LSECs and BMECs during acute viral infections by MHVs to limit liver damages associated with viral-induced exacerbation of inflammatory response and prevent brain invasion by MHVs following viral spread through the bloodstream. They also reveal a new worsening role for TLR2 in the evolution of acute viral hepatitis paving the way for new therapies targeting TLR2-induced inflammatory activity

    Pathogenic Mouse Hepatitis Virus or Poly(I:C) Induce IL-33 in Hepatocytes in Murine Models of Hepatitis.

    Get PDF
    International audienceThe IL-33/ST2 axis is known to be involved in liver pathologies. Although, the IL-33 levels increased in sera of viral hepatitis patients in human, the cellular sources of IL-33 in viral hepatitis remained obscure. Therefore, we aimed to investigate the expression of IL-33 in murine fulminant hepatitis induced by a Toll like receptor (TLR3) viral mimetic, poly(I:C) or by pathogenic mouse hepatitis virus (L2-MHV3). The administration of poly(I:C) plus D-galactosamine (D-GalN) in mice led to acute liver injury associated with the induction of IL-33 expression in liver sinusoidal endothelial cells (LSEC) and vascular endothelial cells (VEC), while the administration of poly(I:C) alone led to hepatocyte specific IL-33 expression in addition to vascular IL-33 expression. The hepatocyte-specific IL-33 expression was down-regulated in NK-depleted poly(I:C) treated mice suggesting a partial regulation of IL-33 by NK cells. The CD1d KO (NKT deficient) mice showed hepatoprotection against poly(I:C)-induced hepatitis in association with increased number of IL-33 expressing hepatocytes in CD1d KO mice than WT controls. These results suggest that hepatocyte-specific IL-33 expression in poly(I:C) induced liver injury was partially dependent of NK cells and with limited role of NKT cells. In parallel, the L2-MHV3 infection in mice induced fulminant hepatitis associated with up-regulated IL-33 expression as well as pro-inflammatory cytokine microenvironment in liver. The LSEC and VEC expressed inducible expression of IL-33 following L2-MHV3 infection but the hepatocyte-specific IL-33 expression was only evident between 24 to 32h of post infection. In conclusion, the alarmin cytokine IL-33 was over-expressed during fulminant hepatitis in mice with LSEC, VEC and hepatocytes as potential sources of IL-33

    Stimulating a Canadian narrative for climate

    Get PDF
    ABSTRACT: This perspective documents current thinking around climate actions in Canada by synthesizing scholarly proposals made by Sustainable Canada Dialogues (SCD), an informal network of scholars from all 10 provinces, and by reviewing responses from civil society representatives to the scholars' proposals. Motivated by Canada's recent history of repeatedly missing its emissions reduction targets and failing to produce a coherent plan to address climate change, SCD mobilized more than 60 scholars to identify possible pathways towards a low-carbon economy and sustainable society and invited civil society to comment on the proposed solutions. This perspective illustrates a range of Canadian ideas coming from many sectors of society and a wealth of existing inspiring initiatives. Solutions discussed include climate change governance, low-carbon transition, energy production, and consumption. This process of knowledge synthesis/creation is novel and important because it provides a working model for making connections across academic fields as well as between academia and civil society. The process produces a holistic set of insights and recommendations for climate change actions and a unique model of engagement. The different voices reported here enrich the scope of possible solutions, showing that Canada is brimming with ideas, possibilities, and the will to act

    BRAIN INVASION BY MOUSE HEPATITIS VIRUS DEPENDS ON IMPAIRMENT OF TIGHT JUNCTIONS AND INTERFERON-β PRODUCTION IN BRAIN MICROVASCULAR ENDOTHELIAL CELLS

    No full text
    International audienceUnlabelled - Coronaviruses (CoVs) have shown neuroinvasive properties in humans and animals secondary to replication in peripheral organs, but the mechanism of neuroinvasion is unknown. The major aim of our work was to evaluate the ability of CoVs to enter the central nervous system (CNS) through the blood-brain barrier (BBB). Using the highly hepatotropic mouse hepatitis virus type 3 (MHV3), its attenuated variant, 51.6-MHV3, which shows low tropism for endothelial cells, and the weakly hepatotropic MHV-A59 strain from the murine coronavirus group, we investigated the virus-induced dysfunctions of BBB in vivo and in brain microvascular endothelial cells (BMECs) in vitro. We report here a MHV strain-specific ability to cross the BBB during acute infection according to their virulence for liver. Brain invasion was observed only in MHV3-infected mice and correlated with enhanced BBB permeability associated with decreased expression of zona occludens protein 1 (ZO-1), VE-cadherin, and occludin, but not claudin-5, in the brain or in cultured BMECs. BBB breakdown in MHV3 infection was not related to production of barrier-dysregulating inflammatory cytokines or chemokines by infected BMECs but rather to a downregulation of barrier protective beta interferon (IFN-β) production. Our findings highlight the importance of IFN-β production by infected BMECs in preserving BBB function and preventing access of blood-borne infectious viruses to the brain. Importance - Coronaviruses (CoVs) infect several mammals, including humans, and are associated with respiratory, gastrointestinal, and/or neurological diseases. There is some evidence that suggest that human respiratory CoVs may show neuroinvasive properties. Indeed, the severe acute respiratory syndrome coronavirus (SARS-CoV), causing severe acute respiratory syndrome, and the CoVs OC43 and 229E were found in the brains of SARS patients and multiple sclerosis patients, respectively. These findings suggest that hematogenously spread CoVs may gain access to the CNS at the BBB level. Herein we report for the first time that CoVs exhibit the ability to cross the BBB according to strain virulence. BBB invasion by CoVs correlates with virus-induced disruption of tight junctions on BMECs, leading to BBB dysfunction and enhanced permeability. We provide evidence that production of IFN-β by BMECs during CoV infection may prevent BBB breakdown and brain viral invasion

    Toll-like receptor (TLR)-2 promotes both mouse hepatitis virus (MHV) replication and inflammatory responses in hepatocytes leading to fulminant hepatitis.

    No full text
    International audienceAcute viral hepatitis results from an inefficient innate immune response to clear the virus and a delayed immune adaptive response. Murine hepatitis virus (MHV) infection represents a unique animal model to identify new escape mechanisms in liver of innate immune responses. The objective of this study was to identify early disorders in TLRs, helicases, cytokines and chemokines favoring the development of a fulminant hepatitis. Groups of C57BL/6 WT and TLR2-/- mice were infected with highly hepatotropic MHV3 and/or weakly hepatotropic MHV-A59 viruses. Histopathological analysis of liver and mRNA expression levels of viral nucleoprotein, viral sensors, interferons, cytokines and chemokines assessed by RT-qPCR were done in the first 3 days of infection. The results showed that liver damages, viral replication and mRNA levels of TLR-2, TLR-3, RIG-1, MDA-5, IL-33, IFN-b, CXCL1, CXCL9, CXCL-10, CXCL-11, CCL3, CCL5, IL-6 and TNF-a increased higher or appeared sooner in MHV3-infected WT than in MHV-A59 and TLR2-/- mice. To address the role of hepatocytes in TLR2-dependent viral replication and innate immune factors, in vitro viral infections were performed on FL83B cells. The results showed that viral replication and mRNA levels of TLR-2 and IL-6 occurred sooner than those of other innate immune parameters. Moreover, blockade of TLR-2 by siRNA decreased IFN-b, TNF-a, CXCL-1, CXCL-10 and CCL-2 expression in infected hepatocytes and also inhibited the viral replication of MHV-A59, and at a lesser extent of MHV3, suggesting that TLR-2 signaling promotes simultaneously the viral replication and the production of innate immune factors in hepatocytes, exacerbating viral hepatitis

    Liver injury and IL-33 expression in D-GalN, Poly(I:C), D-GalN Poly(I:C) treated mice.

    No full text
    <p>(<b>A</b>) Levels of serum AST/ALT (IU/L) and relative fold change in mRNA expression of IL-33 in WT mice treated with Poly(I:C) (30 µg/mouse i.v.) and/or D-GalN Poly(I:C) at 8h of post injection. (<b>B</b>) Sections of mice liver following PBS, D-GalN, Poly(I:C) and D-GalN Poly(I:C) treatment were stained with H&E for histopathology (arrows indicating hemorrhagic lesions in liver) and for immunolocalisation of IL-33 by using primary antibody goat IgG anti-mouse-IL-33 and secondary HRP-conjugated rabbit anti-goat antibody with hematoxylin counterstaining (black arrows and red arrows indicating IL-33 positive hepatocytes and vascular/sinusoidal endothelial cells, respectively). Scale bar was 200 µm. (<b>C</b>) Comparison of number of IL-33 expressing hepatocytes in PBS and Poly(I:C) treated mice at 8h.</p

    Liver injury and IL-33 expression in WT and NKT (CD1d) KO mice following Poly(I:C) and D-GalN Poly(I:C) treatment.

    No full text
    <p>(<b>A</b>) Levels of serum AST/ALT (IU/L) in WT and CD1d KO mice following PBS, Poly(I:C) (30 µg/mouse i.v.) and/or D-GalN Poly(I:C) treatment at 8h of post injection. (<b>B</b>) Liver histology (H and E) and immunostaining of IL-33 in livers of CD1d KO mice treated with PBS, Poly(I:C) and/or D-GalN Poly(I:C). (<b>C</b>) Comparison of number of IL-33 expressing hepatocytes in WT and CD1d KO mice following PBS, Poly(I:C) and/or D-GalN Poly(I:C) treatment at 8h of post injection.</p

    Cytokine expression of TNF-α, IL-1β, IL-6, TRAIL, CXCL1, and IFN-γ in D-GalN, Poly(I:C), D-GalN Poly(I:C) induced hepatitis mice.

    No full text
    <p>Relative fold change in mRNA expression of TNF-α, IL-1β, IL-6, TRAIL, CXCL1, and IFN-γ in livers of Poly(I:C) (30 µg/mouse i.v.) and/or D-GalN Poly(I:C) treated mice at 8h of post injection. The PBS-treated mice served as a reference for mRNA expression.</p

    Liver injury and IL-33 expression in L2-MHV3 induced fulminant hepatitis in mice.

    No full text
    <p>(<b>A</b>) Levels of serum AST/ALT (IU/L) in mice infected with L2-MHV3 (10<sup>3</sup> TCID(50)) or vehicle at 0, 16, 24, 48 and 72h of post infection. (<b>B</b>) Relative fold change in kinetics of mRNA expression of IFN-β, nucleocapsid of MHV3 and IL-33 in livers of L2-MHV3 induced hepatitis. (<b>C</b>) Sections of mice liver following vehicle or L2-MHV3 infection (16, 24, 48 and 72h) were stained with H&E for histopathology (arrows indicating zone of liver injury). (<b>D</b>) Immunolocalisation of IL-33 in livers of L2-MHV3 fulminant hepatic tissues by using primary antibody goat IgG anti-mouse-IL-33 and secondary HRP-conjugated rabbit anti-goat antibody with hematoxylin counterstaining (black arrows and red arrows indicating IL-33 positive hepatocytes and vascular/sinusoidal endothelial cells, respectively)). Scale bar was 50 µm. (<b>E</b>) Comparison of number of IL-33 expressing hepatocytes in vehicle and L2-MHV3 fulminant hepatic tissues (16, 24 and 32h).</p
    corecore