135 research outputs found

    How to distinguish between interacting and noninteracting molecules in tunnel junctions

    Full text link
    Recent experiments demonstrate a temperature control of the electric conduction through a ferrocene-based molecular junction. Here we examine the results in view of determining means to distinguish between transport through single-particle molecular levels or via transport channels split by Coulomb repulsion. Both transport mechanisms are similar in molecular junctions given the similarities between molecular intralevel energies and the charging energy. We propose an experimentally testable way to identify the main transport process. By applying a magnetic field to the molecule, we observe that an interacting theory predicts a shift of the conductance resonances of the molecule whereas in the noninteracting case each resonance is split into two peaks. The interaction model works well in explaining our experimental results obtained in a ferrocene-based single-molecule junction, where the charge degeneracy peaks shift (but do not split) under the action of an applied 7-Tesla magnetic field. This method is useful for a proper characterization of the transport properties of molecular tunnel junctions.Comment: Main text: 7 pages, 5 figures; SI: 2 pages, 2 figures. Accepted to RSC Nanoscal

    Engineering the Outcoupling Pathways in Plasmonic Tunnel Junctions via Photonic Mode Dispersion for Low-Loss Waveguiding

    Get PDF
    Outcoupling of plasmonic modes excited by inelastic electron tunneling (IET) across plasmonic tunnel junctions (TJs) has attracted significant attention due to low operating voltages and fast excitation rates. Achieving selectivity among various outcoupling channels, however, remains a challenging task. Employing nanoscale antennas to enhance the local density of optical states (LDOS) associated with specific outcoupling channels partially addressed the problem, along with the integration of conducting 2D materials into TJs, improving the outcoupling to guided modes with particular momentum. The disadvantage of such methods is that they often involve complex fabrication steps and lack fine-tuning options. Here, we propose an alternative approach by modifying the dielectric medium surrounding TJs. By employing a simple multilayer substrate with a specific permittivity combination for the TJs under study, we show that it is possible to optimize mode selectivity in outcoupling to a plasmonic or a photonic-like mode characterized by distinct cutoff behaviors and propagation length. Theoretical and experimental results obtained with a SiO2-SiN-glass multilayer substrate demonstrate high relative coupling efficiencies of (62.77 ± 1.74)% and (29.07 ± 0.72)% for plasmonic and photonic-like modes, respectively. The figure-of-merit, which quantifies the tradeoff between mode outcoupling and propagation lengths (tens of μm) for both modes, can reach values as high as 180 and 140. The demonstrated approach allows LDOS engineering and customized TJ device performance, which are seamlessly integrated with standard thin film fabrication protocols. Our experimental device is well-suited for integration with silicon nitride photonics platforms.</p

    First-row transition metal bis(amidinate) complexes; Planar four-coordination of Fe-II enforced by sterically demanding aryl substituents

    Get PDF
    The sterically hindered benzamidinate ligand [PhC(NAr)(2)](-) (Ar = 2,6-iPr(2)C(6)H(3)) has been employed to prepare bis(amidinate) complexes [{PhC(NAr)(2)}(2)M] of the divalent first-row transition metals Cr-Ni (1-5). For Cr (planar), Mn and Co (tetrahedral) the observed structures follow the electronic preference for the metal ion in its highest spin multiplicity, as determined by DFT calculations. Remarkably, the Fe derivative adopts a distorted planar structure while retaining the high-spin (S = 2) configuration. This rare combination due to reduced interligand steric interactions in the planar vs. the tetrahedral structure, combined with a relatively small electronic preference of Fen for the tetrahedral environment. Thus, the simple bidentate ligand N,N '-diarylbenzamidinate provides a convenient means to make this unusual species accessible for further study. (c) Wiley-VCH Verlag GmbH & Co

    Electrostatic Control over Temperature-Dependent Tunneling across a Single Molecule Junction

    Full text link
    Understanding how the mechanism of charge transport through molecular tunnel junctions depends on temperature is crucial to control electronic function in molecular electronic devices. With just a few systems investigated as a function of bias and temperature so far, thermal effects in molecular tunnel junctions remain poorly understood. Here we report a detailed charge transport study of an individual redox-active ferrocene-based molecule over a wide range of temperatures and applied potentials. The results show the temperature dependence of the current to vary strongly as a function of the gate voltage. Specifically, the current across the molecule exponentially increases in the Coulomb blockade regime and decreases at the charge degeneracy points, while remaining temperature-independent at resonance. Our observations can be well accounted for by a formal single-level tunneling model where the temperature dependence relies on the thermal broadening of the Fermi distributions of the electrons in the leads.Comment: 37 pages, 13 figure

    Electron Tunneling in Ferritin and Associated Biosystems

    Get PDF
    Ferritin is a 12 nanometer (nm) diameter iron storage protein complex that is found in most plants and animals. A substantial body of evidence has established that electrons can tunnel through and between ferritin protein nanoparticles and that it exhibits Coulomb blockade behavior, which is also seen in quantum dots and nanoparticles. This evidence can be used to understand the behavior of these particles for use in nanoelectronic devices, for biomedical applications and for investigation of quantum biological phenomena. Ferritin also has magnetic properties that make it useful for applications such as memristors and as a contrast agent for magnetic resonance imaging. This article provides a short overview of this evidence, as well as evidence of ferritin structures in vivo and of tunneling in those structures, with an emphasis on ferritin structures in substantia nigra pars compacta (SNc) neurons. Potential biomedical applications that could utilize these ferritin protein nanoparticles are also discussed.</p

    Statistical Tools for Analyzing Measurements of Charge Transport

    Get PDF
    This paper applies statistical methods to analyze the large, noisy data sets produced in measurements of tunneling current density (J) through self-assembled monolayers (SAMs) in large-area junctions. It describes and compares the accuracy and precision of procedures for summarizing data for individual SAMs, for comparing two or more SAMs, and for determining the parameters of the Simmons model (β and J0). For data that contain significant numbers of outliers (i.e., most measurements of charge transport), commonly used statistical techniques—e.g., summarizing data with arithmetic mean and standard deviation and fitting data using a linear, least-squares algorithm—are prone to large errors. The paper recommends statistical methods that distinguish between real data and artifacts, subject to the assumption that real data (J) are independent and log-normally distributed. Selecting a precise and accurate (conditional on these assumptions) method yields updated values of β and J0 for charge transport across both odd and even n-alkanethiols (with 99% confidence intervals) and explains that the so-called odd–even effect (for n-alkanethiols on Ag) is largely due to a difference in J0 between odd and even n-alkanethiols. This conclusion is provisional, in that it depends to some extent on the statistical model assumed, and these assumptions must be tested by future experiments.Chemistry and Chemical BiologyEngineering and Applied Science

    Electrochemical Sensing in Paper-Based Microfluidic Devices

    Get PDF
    This paper describes the fabrication and the performance of microfluidic paper-based electrochemical sensing devices (we call the microfluidic paper-based electrochemical devices, μPEDs). The μPEDs comprise paper-based microfluidic channels patterned by photolithography or wax printing, and electrodes screen-printed from conducting inks (e.g., carbon or Ag/AgCl). We demonstrated that the μPEDs are capable of quantifying the concentrations of various analytes (e.g., heavy-metal ions and glucose) in aqueous solutions. This low-cost analytical device should be useful for applications in public health, environmental monitoring, and the developing world
    corecore