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Abstract: This paper applies statistical methods to analyze the large, noisy datasets 

produced in measurements of tunneling current density (J) through self-assembled 

monolayers (SAMs) in large-area junctions.  It describes and compares the accuracy and 

precision of procedures for summarizing data for individual SAMs, for comparing two or 

more SAMs, and for determining the parameters of the Simmons model (β and J0).  For 

data that contain significant numbers of outliers (i.e. most measurements of charge 

transport), commonly used statistical techniques—e.g. summarizing data with arithmetic 

mean and standard deviation, and fitting data using a linear, least-squares algorithm—are 

prone to large errors.  The paper recommends statistical methods that distinguish between 

real data and artifacts, subject to the assumption that real data (J) are independent and 

log-normally distributed.  Selecting a precise and accurate (conditional on these 

assumptions) method yields updated values of β and J0 for charge transport across both 

odd and even n-alkanethiols (with 99% confidence intervals), and explains that the so-

called odd-even effect (for n-alkanethiols on Ag) is largely due to a difference in J0 

between odd and even n-alkanethiols.  This conclusion is provisional, in that it depends to 

some extent on the statistical model assumed, and these assumptions must be tested by 

future experiments.  
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Introduction 

Understanding the relationship between the atomic-level structure of organic matter, 

and the rate of charge transport by tunneling across it, is relevant to fields from molecular 

biology to organic electronics.  Self-assembled monolayers (SAMs) should, in principle, 

be excellent substrates for such studies.i

Although a number of experimental factors contribute to the difficulty of the field, 

there is an additional problem: namely, analysis of data.  Many of the experimental 

systems used to measure tunneling across SAMs generate noisy data (in some cases, for 

reasons that are intrinsic to the type of measurement, in some cases because of poor 

experimental design or inadequate control of experimental variables).  Regardless, with 

the exception of work done using scanning probe techniques

  In practice, the field has proved technically and 

experimentally to be very difficult (for reasons we sketch, at least in part, in following 

sections), and measurements of rates of tunneling across SAMs have produced an 

abundance of data with often uncharacterized reliability and accuracy.   

ii,iii,iv,v,vi,vii,viii and break 

junctions,ix and by Lee et al.,x

We have worked primarily with a junction composed of three components: i) a 

“template-stripped”

 the data have seldom been subjected to tests for statistical 

significance, and papers have sometimes been based on selected data, or on (perhaps) 

meaningful data winnowed from large numbers of failures, without a rigorous statistical 

methodology. 

xi

xi

 silver or gold electrode (the “bottom” electrode)—template 

stripping provides a relatively flat (rms roughness = 1.2 nm, over a 25 µm2 area of Ag) 

surface;  ii) a SAM; and iii) a top-electrode, comprising a drop of liquid eutectic GaIn 

alloy, with a surface film of (predominantly) Ga2O3. (We abbreviate this junction as 



 4 

“AgTS-SR//Ga2O3/EGaIn”, following a nomenclature described elsewhere.xii,xiii,xiv

xiv

) Figure 

1 shows a schematic of an assembled junction, including examples of defects in the 

substrate, SAM, and top-electrode that affect the local spacing between electrodes. (The 

composition of the junction has been discussed elsewhere in detail ).  The metric for 

characterizing charge transport through this junction is the current density (J, A/cm2) as a 

function of applied voltage (V).  We calculate J by dividing the measured current by the 

cross-sectional area of the junction, inferred (assuming a circular cross-section) from the 

measured diameter of the contact between the Ga2O3/EGaIn top-electrode and the SAM.   

This paper is a part of a still-evolving effort to use statistical tools to analyze the data 

generated by this junction, and to identify factors that contribute to the noise in the data.  

This analysis is important for our own work in this area, of course.  It is also—at least in 

spirit—important in analyzing data generated using many SAM-based systems.  We 

acknowledge that our analysis contains a number of approximations.  It is, however, 

extremely useful in identifying sources of error, and in providing the basis of future 

evolutions of these types of systems into simpler and more reliable progeny. 

To develop and demonstrate our analysis, we use data collectedxiv across a series of n-

alkanethiolate SAMs, S(CH2)n-1CH3, for n = 9 – 18.  Figure 2 powerfully conveys the 

magnitude of the challenge faced by any analysis of charge transport in 

AgTS-SR//Ga2O3/EGaIn junctions (and, we strongly suspect, other systems as well).  It 

shows two histograms (see the Supporting Information for details on plotting histograms) 

of J on a log-scale for n-alkanethiols at opposite ends of the series: the histogram of 

S(CH2)17CH3 (black) is superimposed on that of S(CH2)9CH3 (gray).  Given that the  
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Figure 1:  

The formation and structure of an AgTS-SR//Ga2O3/EGaIn junction.  To form the 

junction, a conical tip of Ga2O3/EGaIn, suspended from a syringe, is lowered into contact 

with a SAM on a AgTS substrate.  The substrate is grounded; an electrometer applies a 

voltage to the syringe and measures the current flowing through the junction.  The 

schematic representation of the junction shows defects in the AgTS substrate and SAM, as 

well as adsorbed organic contaminants, and roughness at the surface of the Ga2O3 layer.  

Note that some of these defects produce “thick” areas, while others produce “thin” areas. 
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Figure 2:  

Histograms of log|J/(A/cm2)|, at V = -0.5 V, for SAMs of two n-alkanethiols: 

S(CH2)17CH3 (gray bars), and S(CH2)9CH3 (black bars).  These histograms overlap to a 

significant degree, despite being on opposite ends of the series of n-alkanethiols.  In other 

words, the dispersion (spread) in the data for these two SAMs (which are representative 

of other n-alkanethiols), is similar to the effect of changing n from 10 to 18. 
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lengths of these two alkanethiols differ by almost a factor of two, the overlap between the 

data generated by these two SAMs is surprising—and there are seven more compounds 

that lie between these two.  This overlap is not as severe when the Ga2O3/EGaIn used to 

contact the SAM is stabilized in a microfluidic channel,xv

Foundational Assumptions of Statistical Analysis of Charge Transport through 

SAMs. Statistical analysis generally (and our analysis in particular) seeks to describe 

populations—i.e., groups of items that are all related by a certain characteristic. xviii

 or when a single, experienced 

user (rather than a group of users with different levels of experience) collects the data.  

Even under these favorable circumstances, however, the spread in the data is still 

significant.  One question that this paper seeks to address is how to how to draw 

confident conclusions about molecular effects when i) the spread of the data is 

comparable to the magnitude of the effect being investigated, and ii) the noise in the data 

make it difficult to separate real results from artifacts. 

xvi,xvii,   

xiv

An example of a population that we study is the set of all possible 

AgTS-S(CH2)12CH3//Ga2O3/EGaIn junctions that could be prepared according to our 

standard procedure.   Obviously, such a population is immeasurably large, and, as is 

typical in statistical analysis, it is impossible to measure the entire population directly.  

We must, therefore, measure a representative sample of the population, and then use 

statistical analysis to draw conclusions, from the sample, about the general population.  

Hence, for example, we measure current density, J (at a particular bias, V) for a certain 

sample of AgTS-S(CH2)12CH3//Ga2O3 junctions, and make generalizations about J for the 

population of all AgTS-S(CH2)12CH3//Ga2O3/EGaIn junctions. 
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In order to draw conclusions, from a random sample, about the population from 

which it is derived, it is necessary to have a statistical model that identifies the 

meaningful parameters of the population, and describes how the observations in a sample 

can be used to estimate those parameters.  We currently use a statistical model to describe 

how values of J arise from a population of AgTS-SR//Ga2O3/EGaIn junctions.  Our model 

is a statistical extension of the approximate but widely used Simmons modelxix

 

J = J0e
−βd

 (eq. 1), 

which describes tunneling through an insulator, at a constant applied bias; the issues 

raised in the analysis would, however, apply as well to other models. 

                                                                                                                       (1) 

In eq. 1, d is the molecular length (either in Å, or number of carbon atoms), J0 is a (bias-

dependent) pre-exponential factor that accounts for the interfaces between the SAM and 

the electrodes, and β is the tunneling decay constant.  The Simmons model predicts only 

individual values of J through a junction of known, and constant, thickness.  It is not, 

therefore, a statistical model—one that predicts the properties of a random sample 

comprising measurements of many junctions.   

To develop a statistical model, we began with the assumption that the junctions we 

fabricate fall into two categories: i) junctions in which, despite the presence of defects, 

the basic AgTS-SR//Ga2O3/EGaIn structure dominates charge transport, in keeping with 

the Simmons model, and ii) junctions in which experimental artifacts alter the basic 

structure of the junction to something radically different from AgTS-SR//Ga2O3/EGaIn—

e.g. penetration of the SAM by the Ga2O3/EGaIn electrode yields a junction of the form 

AgTS//Ga2O3/EGaIn—and invalidate the Simmons model as a description of charge 

transport.  The first type of junctions give data that are “informative” about charge 
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transport, while the second type give data that are difficult to interpret, within the 

framework of the Simmons model, and thus “non-informative”.  The goal of our 

statistical analysis, therefore, is to characterize data that are informative, and ignore data 

that are non-informative, by using some method to discriminate between the two.  

There are two major ways to draw a distinction between informative and non-

informative data: i) construct a parametric statistical modelxvi,xvii,xviii that assumes that 

informative data follow a certain probability distribution, while non-informative data 

follow a different distribution, or ii) assume that the majority of the data are informative, 

and choose a methodology that is insensitive to relatively small numbers of extreme data 

(that is, a “robust” methodxx,xxi

Introduction to Our Parametric Statistical Model for Measurements of Charge 

Transport.  In constructing our parametric statistical model, we used the Simmons 

model

), since these data are likely to be non-informative. In this 

paper, we discuss techniques that follow each of these approaches, and argue that they are 

superior to other, more common techniques (which we also discuss) that do not 

distinguish between informative and non-informative data. 

xix as a starting point.  We assumed that β and J0 are constants, and that the actual 

values of d in informative AgTS-SR//Ga2O3/EGaIn junctions vary according to a normal 

distribution (Figure 3A; see Supporting Information and ref. xvi for a discussion of 

statistical distributions), as a result of non-catastrophic defects

xxiii

xxii in the AgTS substrate, 

the SAM, and the Ga2O3/EGaIn electrode.   When the Simmons model holds, J 

depends exponentially on d, so a normal distribution of d would translate to a log-normal 

distribution of J (i.e. a normal distribution of log|J/(A/cm2)|; hereafter, log|J| for  
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Figure 3:  

Deviations of log|J| from normality, and their effects on Methods 1 – 3.  A) The standard 

normal distribution, with a mean of 0 and a standard deviation of 1 (these quantities are 

unitless).  B) The first of two identical histograms of log|J(-0.5 V)/(A/cm2)| for 

S(CH2)17CH3.  This plot shows two primary deviations of log|J| from normality: i) a long 

tail (i.e. a larger share of the sample to the right of the peak than in a normal distribution), 

and ii) outliers (data that lie far from the peak).  C) Methods 1 – 3 respond differently to 

these deviations of log|J| from normality, as shown by their estimates for the location of 

the sample.  Methods 1 responds the least to the long tail and outliers on the right, 

Method 2 responds moderately to them, and Method 3 responds strongly to them. 
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Figure 3 (Continued) 
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convenience). In other words, our model predicts that informative measurements of log|J| 

are normally distributed.  Based on this assumption, our statistical model predicts that 

log|J| for any population of AgTS-SR//Ga2O3/EGaIn junctions will have two components: 

i) a normally distributed component that is informative, and ii) a component comprising 

non-informative values of log|J| that follow an unknown and unspecified distribution.  

Aside from having some a priori physical justification, these two components predicted 

by our statistical model are observed in experimental results (an example—log|J| for 

S(CH2)17CH3—is shown in Figure 3; these data have been published previouslyxiv).  In all 

cases, a prominent, approximately Gaussian peakxvi is easily identifiable, but anomalies 

(Figure 3B) are also present: i) long tails (portions of data that extend beyond the 

Gaussian peak, to the left or right, and cause the peak to be asymmetric) and ii) outliers 

(individual data, or clusters of data, that are separated from the main peak of the 

histogram by regions of “white space”).xx,xxiv

A key implication of our statistical model is that the normally distributed component 

of log|J| is the only component that gives meaningful information about the SAM.  

According to the model, deviations of log|J| from normality arise from processes that 

dramatically alter the typical structure of the junction, and may mislead a naive analysis 

that treats these deviations as informative.  If the model is correct, the analysis of log|J| 

should, therefore, be designed to ignore any deviations of log|J| from normality.  

  The difference between these two 

categories is somewhat subjective and arbitrary, and we present them only as guides to 

aid the reader in visualizing the pathologies of distributions of log|J|.  None of the 

methods of analysis described in this paper require distinguishing between long tails and 

outliers; we, therefore, refer to them collectively as “deviations of log|J| from normality”. 
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We believe that this model offers a reasonably accurate description of log|J| (we offer 

further justification for our model in the Experimental Design section), but we recognize 

that our model could be wrong in an important way.  Specifically, if the component of 

log|J| arising from the typical behavior of the junction follows something other than a 

normal distribution (i.e. if d is not normally distributed, or if β or J0 vary significantly 

between junctions), then, by definition, even informative measurements of log|J| should 

deviate from normality, probably to a small extent.  

If our statistical model is wrong in this way, then ignoring deviations of log|J| from 

normality will lead to similarly small, but possibly significant errors.  On the other hand, 

an approach that incorrectly treats all data as informative will be prone to large errors 

from the influence of extreme data.  Between these two approaches would lie methods 

that neither assume that log|J| is normal, nor respond strongly to extreme values.  Each of 

the methods of statistical analysis discussed in this paper (Figure 4) fall into one of these 

three categories, according to how strongly they respond to deviations of log|J| from 

normality.  The relative accuracy of these different methods of analysis will depend on 

whether our statistical model is eventually confirmed or discredited. 

Also, the precision (but not the accuracy) of all of the methods of analysis described 

in this paper depends on the assumption that our measurements of log|J| are independent 

and uncorrelated to one another.  We are relatively certain that this assumption is wrong 

(for instance, values of log|J| measured within the same junction correlate more with one 

another than values of log|J| measured from two different junctions), and we discuss, in 

the Results and Discussion section, a procedure to correct for violations of this 

assumption.  If this correction is insufficient, then all methods of analysis will overstate  
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Figure 4:  

Schematic of the four methods of analyzing charge transport discussed in this paper.  

Methods 1 – 3 use the data (samples of log|J|) to calculate single-compound statistics; 

plotting those statistics, and fitting the plots, yields trend statistics.  For Method 1, µG is 

the Gaussian mean; for Method 2, m is the median; and for Method 3, µA is the arithmetic 

mean.  Methods 4a proceed directly to plotting and fitting the raw data to determine trend 

statistics.  The bottom row gives the sensitivity of each method to common deviations of 

log|J| from normality (long tails and outliers). 
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the statistical confidence of their conclusions, and underestimate the widths of confidence 

intervals (see Results and Discussion).  Further research is needed to determine to what 

extent measurements of log|J| are correlated, and how strong of a correction must be 

applied to account for this correlation. 

Comparison of Methods for Analyzing Charge Transport.  We are interested in two 

categories of statistical results: i) single-compound statistics, which summarize 

measurements of charge transport through a single type of SAM (i.e. a particular 

compound), and enable comparisons between two SAMs, and ii) trend statistics, which 

lead to conclusions about the dependence of charge transport on some parameter (such as 

molecular length) that varies across a series of SAMs.  In this paper, we describe five 

methods of analyzing charge transport.  Figure 4 schematically shows that Methods 1 – 3 

begin by calculating single-compound statistics, and then use those results to determine 

trend statistics, while Methods 4a and 4b do not produce single-compound statistics, and 

instead proceed directly from the data (samples of log|J|) to calculation of trend statistics.  

It is not necessary to choose only one method of analysis for both single-molecule and 

trend statistics; in fact, we shall show that, in some cases, it is best to use one method to 

estimate single-compound statistics, and another to estimate trend statistics. 

Single-Compound Statistics. Methods 1 – 3 generate single-compound statistics that 

describe samples of log|J| for SAMs of a particular compound.  Each method has a 

procedure for calculating i) the location (sometimes called the center, or central 

tendency) of the sample, ii) the dispersion (sometimes called the scale, or spread) of the 

sample, and iii) a confidence interval that surrounds the location and has a width related 

to the dispersion and the number of data in the sample.xvi,xvii,xviii,xx  To estimate the 
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location and dispersion, respectively, Method 1 uses the mean (µG) and standard 

deviation (σG) determined by fitting a Gaussian function to the sample of log|J|, Method 

2 uses the median (m) and adjusted median absolute deviation (σM) or interquartile range 

of the sample, and Method 3 uses the arithmetic mean (µA) and standard deviation (σA) of 

the sample.  (These quantities, and the procedures used by each method for calculating 

confidence intervals, are detailed in the Results and Discussion section.)    

Each method makes different assumptions about the distribution of log|J|. Method 1 

employs an algorithm that essentially “selects” the most prominent peak in the sample of 

log|J|, and disregards the rest.  In other words, Method 1 closely follows the statistical 

model described above, in that it assumes that deviations of log|J| from normality (i.e. 

long tails or outliers; see Figure 3B) are not informative about charge transport through 

the SAM, and ignores them.  The appropriateness of Method 1 for statistical analysis 

depends, therefore, on the correctness of this assumption.  Methods 2 and 3 both depart 

from the statistical model by taking into account, to different degrees, deviations of log|J| 

from normality.  Method 2 (m and σM) responds only moderately to such deviations, 

while even a few extreme data can have a significant effect on Method 3 (µA and σA). 

Figure 3C briefly demonstrates the different responses to deviations of log|J| from 

normality of the locations estimated by these three methods.  The histogram of 

S(CH2)17CH3 exhibits a long tail to the right (towards high values of log|J|).  This tail 

strongly influences the arithmetic mean (Method 3) and “pulls” it to the right by 0.23 log-

units, in comparison with the Gaussian mean (Method 1).  By comparison, the median 

(Method 2) is only moderately affected by the tail, and differs from the Gaussian mean by 

0.06 log-units.  Although even the divergence between Methods 1 and 3 may not appear 
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significant, there are two reasons to take it seriously.  i) For the two n-alkanethiols on the 

extreme ends of the series, S(CH2)8CH3 and S(CH2)17CH3, the locations of the 

distributions of log|J| only differ by about 3.0 – 3.5 log-units (depending on the method 

used to estimate the locations).  The divergence, evident in Figure 3, between Method 1 

and Method 3, therefore, represents approximately 8% of the total change in log|J| across 

the entire series of n-alkanethiols.  When comparing two adjacent n-alkanethiols (e.g. n = 

17 and 18), the differences between Methods 1 – 3 will be even more significant. ii) The 

data discussed in this paper—in particular, n-alkanethiols for which n is even—were 

collected by experienced users, and probably exhibit fewer deviations from normality 

than would data collected by inexperienced users.  For inexperienced users, then, the 

effect of outliers and tails on Method 3 may be large, and using Method 1 or 2 is 

important to draw accurate conclusions from the data. 

The goal of single-compound statistics is to estimate the location (and, secondarily, 

the dispersion) of the population in a way that is both precise and accurate.  The 

precision of the estimated location is determined by the width of the confidence interval, 

such that a narrow confidence interval indicates a precise (although not necessarily 

accurate) estimate.xvi  The accuracy of the location estimated by a given method depends 

on how well the assumptions of the method conform to reality.  If, through its 

assumptions, a method correctly discriminates between informative and non-informative 

data, then its estimate for the location will generally be accurate, in the sense that the true 

location of the log|J| for the population will, with a stated confidence (e.g. 99%), lie 

within the confidence interval.xvii  If the method makes incorrect assumptions about the 

data, then the confidence interval cannot be trusted to contain, at the stated level of 
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confidence, the true location of the population.  Because we believe that our statistical 

model comprises reasonably correct assumptions about the data, we recommend the use 

of either Method 1 (Gaussian mean) or 2 (median), but not Method 3 (arithmetic mean), 

for estimating single-compound statistics. 

Trend Statistics.  When calculating trend statistics, such as β and J0 (see eq. 1), it is 

possible to use any of the four methods discussed in this paper.  In general, the process of 

calculating trend statistics involves plotting log|J|, measured across a series of 

compounds, against some molecular characteristic that varies across the series (e.g., 

molecular length, n), and then fitting the plot to a model that specifies the relationship 

between the desired trend statistics and the data.  The plotted values of log|J| are either 

single-compound statistics summarizing log|J| for each molecule (Methods 1 – 3), or the 

raw data themselves; that is, all measured values of log|J| (Methods 4a and 4b).   

All methods use an algorithm to fit (values summarizing) log|J| vs. n to a linear model 

(the Simmons model predicts a linear relationship between log|J| and n, via the parameter 

d).  The choice of the fitting algorithm determines the influence exerted on the outcome 

by data that lie far from the fitted line (these data are roughly equivalent to those that 

cause log|J| to deviate from normality—i.e. long tails and outliers in each sample).  For 

Methods 1 – 3, the choice of the fitting algorithm has little effect on the outcome, 

because, in the process of estimating single-compound statistics, each Method has 

already made the assumptions that determine how it responds to extreme data.  By 

summarizing log|J| for each compound and passing those summaries to the fitting 

algorithm that determines trend statistics, these Methods have compressed the wealth of 

information in each sample, and essentially ensured that the fitting algorithm will not 



 19 

“see” any extreme data. In calculating trend statistics, therefore, Methods 1 – 3 carry 

forward all of the respective assumptions and biases that they exercise in the calculation 

of single-compound statistics. 

For Methods 4a and 4b, by contrast, the choice of the fitting algorithm has a 

(potentially) large impact on the results, because deviations from normality are invariably 

present in the raw data.  Method 4a uses an algorithm that minimizes the sum of the 

absolute values of the errors between the data and the fitted line (a “least-absolute-errors 

algorithm”), while Method 4b employs an algorithm that minimizes the sum of the 

squares of those errors (a “least-squares algorithm”).  Method 4a responds to deviations 

of log|J| from normality in a manner analogous to that of Method 2; both methods are 

only moderately affected by such deviations.  Method 4b, on the other hand, is analogous 

to Method 3, in that it responds strongly to deviations from normality.   

Although Methods 4a and 4b cannot give single-compound statistics, they have the 

advantage of offering far greater precision than Methods 1 – 3 in estimating trend 

statistics.  Because Method 4a has assumptions similar to Method 2, the accuracies of the 

two methods will also be similar (by the same token, the accuracy of Method 4b will be 

similar to that of Method 3).  We, therefore, recommend using either Method 1 (fitting 

Gaussian means of log|J| with a least-squares algorithm) or Method 4a (fitting all values 

of log|J| with a least-absolute-errors algorithm) to estimate trend statistics.  If estimates 

produced by these two methods agree, then it may be preferable to use Method 4a, 

because of its high precision. 

Figure 4 schematically depicts how each of the four methods progress from 

histograms of log|J| for single compounds (three compounds are shown, but each method 
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can involve an arbitrary number) to analysis of the trend across those compounds; the 

figure also indicates the type of information given by each of the four methods.  All four 

methods assume respond differently to deviations of log|J| from normality, and, as we 

shall demonstrate, the choice of method can affect the conclusions about charge transport 

drawn by the analysis. 

 

Background 

Methods for Measuring Charge Transport.  Many approaches exist for measuring 

charge transport through self-assembled monolayers (SAMs) of thiol-terminated 

molecules.  These approaches can be segregated into those that produce small-area (from 

single-molecule to ~ 100 nm2) junctions comprising relatively few molecules (scanning 

probe techniquesii,iii,iv,v,vi,vii,viii and break junctionsix) and those that produce large-area (> 

1 µm2) junctions.   

Most large-area junctions employ a SAM, supported on a conductive substrate, and 

contacted by a top-electrode – either a layer of evaporated Au, a drop of liquid Hg 

supporting a SAM (Hg-SAM), or a structure of Ga2O3/EGaIn.  While it was common, in 

the past, to evaporate Au directly onto the SAM,xxv

x

 this procedure resulted in low yields 

(up to 5% when executed very carefully, but usually < 1 %)  of non-shorting junctions, 

and is now known to damage the SAM.xxvi  Most currently successful large-area junctions 

employ a top-electrode with an insulating or semiconducting barrier (a “protective layer”) 

between the metal and the SAM, to protect against damage from high-energy metal atoms 

(during evaporation) and guard against metal filaments formed by the electromigration of 

metal atoms through defects in the SAM.  Examples of protective layers between the 
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SAM and the metal of the top-electrode include conducting polymers (e.g. 

Au-SAM//PEDOT:PSS/Au junctions of Akkerman et al.xxvii

xxviii), a second SAM (e.g. Ag

 and Au-SAM//(polymer)/Hg 

drop junctions of Rampi et al. -

xxii

SAM//SAM-Hg junctions of 

us, , xxxii), and a layer of metal oxides (e.g. our Agxxix and othersxxx,xxxi, TS

xii

-

SAM//Ga2O3/EGaIn junctions ,xiv).   

There are two exceptions to the rule of the protective layer in large-area junctions. i) 

Cahen et al.xxxiii xxxiv, ,xxxv

x

 use n-Si-R//Hg and p-Si-R//Hg junctions, in which a layer of 

alkenes, covalently attached to a doped and hydrogen-passivated Si surface, is directly 

contacted by a drop of Hg.  Use of a semiconducting, rather than a metallic, substrate 

reduces the migration of metal atoms responsible for metal filaments and shorts.  ii) Lee 

et al.  continue to evaporate Au directly on the SAM to form Au-SAM//Au junctions.  

Skilled users can generate yields of 1 – 5 %, and the authors use careful statistical 

analysis to distinguish between real data and artifacts resulting from SAMs damaged by 

the direct evaporation of Au.   

AgTS-SAM//Ga2O3/EGaIn Junctions.  In our nomenclature, AgTS denotes an ultra-

flat Ag substrate produced by template stripping,xi while Ga2O3/EGaIn denotes the 

eutectic alloy of gallium and indium (75% Ga, 25% In by weight, m.p. = 15.5 °C) with its 

surface layer of oxide.xxxvi  

The question – does Ga2O3/EGaIn form good electrical contact to SAMs? – hinges on 

the resistivity of the Ga2O3 surface film.  We have measuredxxxvii

The rheological properties of this composite material make it 

possible to mold it into conical shapes, but still allow it to deform under applied pressure.  

These properties make Ga2O3/EGaIn an excellent material for forming soft, microscale 

contacts to structures like SAMs.  

 the thickness (~ 0.7 nm 
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is the average thickness, although some regions may be several µm thick), composition 

(primarily Ga2O3), and resistivity (105 – 106 Ωcm) of the film. The film of Ga2O3, like 

all surfaces in the laboratory, supports a layer of adsorbed organic material, which is 

undoubtedly present in AgTS-SAM//Ga2O3/EGaIn junctions (and in many other 

junctions).  The measured thickness of this layer is ~ 1 nm,xxxvi,xxxvii and its composition 

probably depends on the environment, but it is probably a discontinuous layer, rather than 

a continuous sheet.xxxviii  

xiii

We measured the resistivity of the Ga2O3 film, with its adsorbed 

organic layer, using two direct methods  (contacting structures of Ga2O3/EGaIn with Cu 

and ITO electrodes) and one indirect method (placing an upper bound on the resistivity of 

the Ga2O3 using the value of J0, explained below, for n-alkanethiols).  All three methods 

converge to a range of 105 – 106 Ωcm for the resistivity of the Ga2O3 film.  This range is 

at least three orders of magnitude lower than the resistivity of a SAM of S(CH2)9CH3 

(~ 109 Ωcm), the least resistive SAM that we have measured.xxxix  The Ga2O3 film, and 

especially the layer of adsorbed organic matter on its surface, are certainly the least 

understood components of our system.  Based on these measurements, however, we 

conclude that the Ga2O3 film, with its adsorbed organic layer, is sufficiently conductive 

that it does not affect the electrical characteristics of the junction.  This conclusion is 

supported by our recent studyxl

Tunneling through SAMs.  As stated in the introduction to our statistical model, 

tunneling through SAMs is widely assumed to follow eq. 1.

 that uses molecular rectification in various SAMs to show 

that the SAM, rather than the Ga2O3 layer, dominates charge transport through the 

junction. 

xix Typically, one of the first 

experiments performed with any experimental system is to measure log|J| through SAMs 
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of a series of n-alkanethiols of increasing molecular lengths (d), and to calculate the 

values of β and J0. The tunneling decay constant, β, is related to the height and shape of 

the tunneling barrier posed by the SAM. Because the value of β theoretically depends 

only on the molecular orbitals of the SAM, and not on the interfaces between the SAM 

and the electrodes, β is expected to be largely independent of the method used to measure 

log|J|, and is, thus, a useful standard with which to validate new techniques.  By contrast, 

J0 is a pre-exponential factor that accounts for factors that contribute to “contact 

resistance” – the resistivity and density of states of the electrodes, and any tunneling 

barriers at the interfaces between the SAM and the electrodes. While it is rare to find a 

value of J0 in the literature, this parameter also contains important information about the 

electrodes and interfaces in a junction—information that is complementary to that 

conveyed by β.  Thus, J0 could be used to compare different techniques for measuring 

charge transport through SAMs. 

The Simmons model contains many assumptions (it is, after all, a simplification of a 

model originally designed to describe tunneling through a uniform insulator with 

extended conduction and valence bands), the most significant of which is that tunneling is 

the only operative mechanism of charge transport through the SAM.xix  Another 

significant assumption is that the complicated tunneling barrier posed by a particular 

class of SAMs can be described by a simplified “effective” barrier of a certain height, and 

that this height does not vary with the length of the molecules in the SAM (i.e. that β 

does not depend on d).  Despite these assumptions, eq. 1 shows reasonable agreement 

with results for n-alkanethiols in the approximate range of n = 8 – 20, with values of β of 
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0.8 – 0.9 Å-1 (1.0 – 1.1 nC
-1),xli

Defects in SAM-Based Junctions Necessitate Reporting of All Data.  Measurements 

of charge transport through SAMs have often neglected the contribution of (probably) 

unavoidable variations in the system to the dispersion of data.  Because J depends 

exponentially on the thickness of the SAM, J can be extremely sensitive to defects in a 

tunneling junction, especially those that decrease the local distance between electrodes 

(so-called “thin-area” defects).

 and it is now standard practice to report the value of β for 

n-alkanethiols as one (often the primary, or only) parameter of interest.  

xxii  For example, assuming a value of 0.8 Å-1 for β, a 

defect 5 Å thinner than the nominal thickness of the SAM would carry a current density 

more than 50 times that of a corresponding area on a defect-free SAM.  If such “thin” 

defects comprised just 2% of the total area of the junction, then the same amount of 

current would pass through those thin-area defects as through the rest of the (defect-free) 

SAM.  As a result of the exponential dependence of J(V) on d and β, thin-area defects can 

easily dominate charge transport through the junction.  By contrast, thick-area defects 

(those that increase the local separation between electrodes) can usually be ignored, 

because their contribution to J(V) is small relative to other sources of error. Many types 

of defects are common in both the AgTS substrate (e.g. grain boundaries, vacancy islands, 

and step edges) and the SAM (e.g. domain boundaries, pinholes, disordered regions, and 

physisorbed contaminants).xxii  

These defects presumably give rise to the large spread observed in distributions of 

log|J|.  The roughness of the metal substrate (whether Au or Ag) is one of the most 

significant factors in determining the density of defects in SAM-based junctions.  In a 

previous paper,xi we showed that using template-stripped substrates results in smoother 
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surfaces (for AgTS, rms roughness = 1.2 nm over a 25 µm2 area) than using surfaces as-

deposited by electron-beam evaporation (for as-deposited Ag, rms roughness = 5.1 nm 

over a 25 µm2 area).  In Ag-SAM//SAM-Hg junctions, this decrease in roughness 

between as-deposited and template-stripped Ag decreased the range of measured values 

of J by several orders of magnitude, and increased the yield of working junctions by more 

than a factor of three.xxii 

 

Experimental Design 

“Informative” vs. “Non-informative” Measurements of log|J|. The Simmons 

modelxix (eq. 1) of tunneling predicts individual values of J for known values of d, but 

does not describe actual measurements of J (or log|J|).  Actual measurements comprise 

random samples of many junctions, across which the parameters of the Simmons model 

(most likely d, but possibly β and J0) certainly vary.  Because the Simmons model does 

not specify how real data arise from random sampling of charge transport (i.e. it is not a 

statistical model), our statistical analysis must account for what the Simmons model 

ignores, in order to derive meaningful results from measurements of log|J|.  

We begin by recognizing that, in our junctions (and SAM-based junctions in general), 

there are two classes of defects: i) defects that preserve the basic AgTS-SR//Ga2O3/EGaIn 

structure of the junction, even while changing d, and ii) defects (perhaps better termed 

“artifacts”) that disrupt the basic structure of the junction.  Defects belonging to the first 

class might include, for example, domain boundaries, pinholes, disordered regions, and 

physisorbed contaminants on the SAM.  Even though this class of defects may alter d in a 

junction, the Simmons model remains a valid description of charge transport through the 
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junction, because charge must still tunnel between the AgTS and Ga2O3/EGaIn electrodes, 

through the SAM.  In the second class of defects belong artifacts, such as areas in which 

the Ga2O3/EGaIn electrode penetrates or intrudes into the SAM, regions of bare EGaIn 

(lacking a Ga2O3 film) in contact with the SAM, and metal filaments that bridge the two 

electrodes and bypass the SAM.  These artifacts not only change d in the junction, but 

they also change (at least) J0, and might alter the mechanism of charge transport between 

electrodes to some process other than tunneling.  In short, these types of artifacts 

invalidate the Simmons model (with its assumption of a constant J0 for 

AgTS-SR//Ga2O3/EGaIn junctions with a constant R group) as a description of charge 

transport through the junction.   

There is nothing particularly controversial in partitioning defects into those that 

preserve the integrity of the Simmons model, and those that destroy it, nor in stating that 

the former result in measurements that are “informative” about charge transport through 

the SAM, while the latter result in measurements that are “non-informative”.  The 

question is how to account fully for the informative data, while minimizing the effect of 

non-informative data on the analysis.  There are, broadly, two ways to approach this 

question: i) to use a parametric (or semi-parametric) statistical modelxvi,xvii that 

differentiates between the distributions of informative and non-informative data in order 

to identify the former and discard the latter, and ii) to assume that informative data 

predominate over non-informative data and use an analysis that responds strongly to the 

bulk of the data (no matter how the data are distributed) and weakly to a small number of 

extreme values.xx,xxi  As we will show, Method 1 follows the first approach, while 

Method 2 (and Method 4a) follows the second approach.  (Methods 3 and 4b follow 
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another, inferior approach that does not discriminate between informative and non-

informative data; we include them in this paper in order to illustrate their deficiencies, 

because they are, unfortunately, the methods most commonly used outside of statistical 

disciplines.) 

Method 1 uses a statistical model to distinguish between informative and non-

informative data.  Method 1 depends on a statistical model that predicts that when log|J| 

arises from informative measurements, those data are normally distributed.  The 

statistical model is based on the following reasoning: when the Simmons model holds, 

the statistical distribution of log|J| is determined by the distributions of J0, β, and d—if 

one knows the distributions of these three parameters, one can predict the distribution of 

log|J| that results from informative measurements. Our statistical model assumes that, in 

junctions that generate informative data, d is normally distributed, while J0 and β are 

approximately constant (i.e. if they vary, their contributions to the dispersion of log|J| are 

negligible, compared to the contribution of d).xlii

There are two lines of reasoning that support the assumptions that log|J| is normally 

distributed.  i) That d is normally distributed is probable, because normal distributions 

arise frequently in nature when a variable is influenced by many uncorrelated factors.

  Since log|J| is proportional to d, if d is 

normally distributed, then log|J| is also normally distributed.  Method 1 follows this 

statistical model by employing a fitting algorithm to “seek out” the largest component of 

the histogram of log|J| that conforms to a normal distribution, and “ignore” the rest.  If 

the model is correct, then Method 1 finds the informative data in the most prominent 

Gaussian peak in the sample, and rejects the non-informative data that deviate from this 

peak. 

xviii  
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If the factors that determine the density and type of defects in a junction, therefore, are 

many and uncorrelated with one another—a plausible scenario—then d will be normally 

distributed, as will log|J|. ii) Previous experiments by usxii,xiv (and othersx), such as the 

data shown in Figure 3B, are consistent with log|J| being approximately normally 

distributed.  Although histograms of log|J| are often noisy and slightly asymmetric, there 

is almost always a prominent peak resembling a Gaussian function identifiable in every 

histogram.   

Despite some theoretical and experimental support, the assumption that log|J| is 

normally distributed might still be wrong.  Other distributions, such as a Cauchy 

distribution (sometimes called a Lorentzian distribution) or a Student’s t-distribution, 

may also be consistent with observed histograms of log|J|, and we cannot entirely rule 

them out, but they lack the a priori physical justification of a normal distribution.  It is, 

however, plausible that while d is normally distributed, our procedure for measuring 

log|J| does not randomly sample d, but that there is some correlation in the values of d for 

junctions measured under similar conditions.  For example, the junctions formed on a 

common AgTS substrate (supporting a SAM) may have values of d that cluster around a 

certain value (e.g. 10 Å), whereas the values of d for junctions formed on a different AgTS 

substrate may cluster around a higher value (e.g. 12 Å), perhaps due to differences in the 

amount of organic contaminants present in the environment.  In such a case, the first 

AgTS substrate would result in one normal distribution of log|J|, while the second 

substrate would result in another, overlapping normal distribution, centered at lower 

values of log|J| than the first.   
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Such clustering may exist at multiple levels, such as between AgTS substrates, 

Ga2O3/EGaIn electrodes, operators, or times of year during which measurements were 

performed.  Investigating the individual contributions of each level to clustering in log|J| 

(via clustering in d), and answering the question of whether such clustering is significant 

enough to cause log|J| to deviate noticeably from normality, would entail an in-depth 

experimental study that is beyond the scope of this paper.  We do not know whether 

clustering violates the assumption that log|J| is normally distributed, but we raise it as a 

concern, in order to disclose a potential failure of our statistical model, and to motivate 

the development of multiple methods of statistical analysis to respond flexibly to such a 

contingency.  

Clustering would possibly affect the accuracy of Method 1, but it would also possibly 

affect the precision of all of the methods described in this paper, as expressed by the 

widths of the confidence intervals around parameters estimated by each method.  As 

explained in the Results and Discussion section, the width of a confidence interval 

decreases as the number of data increases; that is, many measurements lead to a narrow 

confidence interval.  For each of Methods 1 – 4, this relationship between the width of a 

confidence interval and the number of data depends on the assumption that the data are 

independent from, and uncorrelated to, one another.  If there is significant clustering of 

measurements of log|J|, then this assumption will be violated, the widths of confidence 

intervals will be underestimated, and the precision of results will be overstated.  In the 

Results and Discussion section, we discuss a procedure for estimating the correlation 

within a sample (termed “autocorrelation”) and correcting for its effect on the width of 

confidence intervals.  We do not currently have enough information to evaluate whether 
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or not this procedure adequately corrects for autocorrelation, and we emphasize the need 

for further experiments to investigate and minimize the amount of autocorrelation in our 

measurements. 

Methods 2 and 4a do not assume a specific distribution for log|J|, but avoid extreme 

values.  Currently, we are reasonably confident that our statistical model describes real 

measurements of log|J| with enough accuracy to be useful, and we, therefore, favor 

Method 1 in our analysis.  In case future experiments or insights cast doubt on our 

statistical model, we offer Method 2 as a substitute that does not depend on our model, 

but does an adequate job of minimizing the effect of (probably) non-informative 

measurements on the analysis.  Method 2 uses the median and other quantiles to 

characterize log|J|.  Since well-defined quantiles exist for every continuous probability 

distribution, Method 2 does not require that log|J| be normally distributed.xvi  The median 

tends to follow the bulk of the data in a sample, and it is much less influenced by extreme 

values than the mean.xx  If informative measurements constitute the bulk of the data, 

therefore, then even extreme values resulting from non-informative measurements will 

have a relatively small effect on Method 2.  Method 4a, as we will show below, carries 

the same relative insensitivityxxi to extreme values as Method 2.  Methods 3 and 4b, by 

contrast, are relatively sensitive to extreme values,xx and are likely to allow non-

informative measurements to bias the conclusions of statistical analysis. 

 

Results and Discussion 

Overview of Assembly of AgTS-S(CH2)9CH3//Ga2O3/EGaIn Junctions and 

Measurement of Charge Transport. We have previously published a large dataset 
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comprising log|J| for n-alkanethiols (n = 9 – 18), with both odd and even numbers of 

carbon atoms in the backbone.xiv  We elected to use this dataset, in order to test and 

demonstrate the analytical methods described in this paper, for two reasons: i) because 

the series of even-numbered alkanethiols (n = 10, 12, 14, 16, 18) is the standard dataset 

used to calibrate and compare experimental techniques for measuring charge transport 

through SAMs, and ii) because the series of both odd and even alkanethiols (n = 9 – 18) 

shows a subtle effect (the “odd-even” effect) that cannot be accurately characterized 

without careful statistical analysis. 

In our previous publication,xiv we formed SAMs of S(CH2)9CH3 (decanethiol) on 

template-stripped silver (AgTS) substrates, and made electrical contact to these SAMs 

using cone-shaped microelectrodes of the liquid eutectic of gallium and indium (75 % 

Ga, 25 % In by weight, with a surface of predominantly Ga2O3).  We denote the resulting 

structure a “AgTS-S(CH2)9CH3//Ga2O3/EGaIn junction”; detailed procedures for forming 

SAMs on AgTS, fabricating cone-shaped electrodes of Ga2O3/EGaIn, and assembling 

these junctions have been given elsewhere.xiii,xiv After forming a junction, we grounded 

the AgTS substrate and applied a voltage (V) to the Ga2O3/EGaIn electrode while 

measuring the current flowing between the two electrodes.  We applied the voltage in 

steps of 50 mV, with a delay of 0.2 s between steps, starting at 0 V, increasing to +0.5 V, 

decreasing to -0.5, and returning to 0V; a cycle, beginning and ending at 0 V, constituted 

one J(V) trace.  We calculated the current density (J) by dividing the current through the 

junction by its estimated contact area, which we determined by measuring the diameter of 

the junction, and assuming a circular contact between the Ga2O3 electrode and the SAM. 
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Excluding Shorts Prior to Analysis. Some analytical tools are especially sensitive to 

outliers in distributions of log|J|, so it is best to begin by excluding any data that are 

unambiguously known to be artifacts, as long as there is a simple procedure for doing so.  

For one type of artifact – short circuits, or simply “shorts” – there is such a procedure.  

We define shorts as values of current that reach the compliance limit of our electrometer 

(± 0.105 A); given the range of contact areas for our junctions (~ 102 – 104 µm2), shorts 

translate to values of |J| in the range of 103 – 105 A/cm2 (log|J| = 3 – 5).  Shorts clearly do 

not give information about the SAM and can bias the distribution towards high values of 

log|J|, so when we perform operations on the raw distribution of log|J|, we discard all 

values of log|J| > 2.5 (i.e. |J| > 3.2 × 102 A/cm2).  We chose this threshold because it is 

higher than J0 for our junctions (see below), but also lower than all shorts, which lie in 

the range of log|J| = 3 – 5 (see Figure 5).   

Another type of artifact that occurs in measurements of charge transport is the open 

circuit, but there is no reliable way to exclude open circuits, as there is for shorts.  An 

open circuit occurs when the Ga2O3/EGaIn electrode fails to make contact with the SAM 

(the image of the junction used to judge contact can sometimes be ambiguous); charge 

cannot tunnel through the SAM, and the flow of current is limited to accumulating charge 

on the substrate and top-electrode.  In such cases, the measured current is low (~ ± 10-12 

A), and the values of |J| that result from these currents range from 10-8 – 10-6 A/cm2 

(log|J| = -8 – -6).  For relatively long alkanethiols (n = 14 – 18), a significant portion of 

the Gaussian peak in the distribution of log|J| extends into this range.  Unlike with shorts, 

therefore, there is no clear threshold that distinguishes between open circuits and real 

data. 
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Calculating Single-Compound Statistics: the Location and Dispersion of log|J|. In 

the introduction, we defined the location and dispersion of a distribution.xvi Here, we  
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Figure 5:  

Comparison of Methods 1 – 3 for estimating the location and dispersion of log|J|, over 

the series of n-alkanethiols: S(CH2)n-1CH3 (n = 9 – 18).  The data shown in this figure 

have been reported previously, but have not been analyzed in this way.xiv  Gray bars 

constitute histograms of log|J/(A/cm2)| at V = -0.5 V.  Black curves show the Gaussians 

fitted to each histogram using the fitting algorithm in Method 1.  Data points (with error 

bars) summarize the location (and dispersion) of log|J| estimated by each method.  

Method 1: upward-facing triangles (and error bars) indicate the Gaussian mean, µG (and 

the Gaussian standard deviation, σG).  Method 2: circles (and error bars) indicate the 

median, m (and the adjusted median absolute deviation, σM).  Method 3: downward-

facing triangles (and error bars) indicate the arithmetic mean, µA (and the arithmetic 

standard deviation, σA).  The vertical positions of the points were chosen only for clarity, 

and do not convey information about the methods.  Insets give the values of location and 

dispersion estimated by each method, as well as the size of the sample (including shorts). 
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Figure 5 (Continued) 
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define three methods for estimating the location and dispersion of distributions of log|J|, 

and discuss the results of these methods, when applied to data that we have previously 

reported for n-alkanethiols.xiv  

Method 1: the Gaussian Mean and Standard Deviation. The first method involves 

constructing a histogram of the sample (see Figure 5, for example), and fitting a Gaussian 

function (eq. 2) to the histogram (f(x) is the frequency of a particular observed value of 

the independent variable, x, and a, µG, and σG are fitting parameters). 

                                                     

 

f x( ) =
a

σG 2π
e

− x −µG( )2

2σ G
2

    
                                        (2) 

The fitting parameters µG and σG are, theoretically, the mean and standard deviation, 

respectively, of the normally distributed component of log|J|. (we refer to these values as 

the “Gaussian mean”, and the “Gaussian standard deviation”).  To fit histograms to 

Gaussian functions, we used an algorithm (MATLAB 7.10.0.499, see Supporting 

Information for a detailed description) that minimizes the sum of the squares of the 

differences between the Gaussian function and the histogram – a “least-squares” 

algorithm.  

The accuracy of the Gaussian mean and standard deviation depend heavily on the 

correctness of the statistical model described in the Experimental Design section—i.e. 

whether all informative measurements of log|J| are randomly sampled from a normal 

distribution. Figure 5 shows histograms of all n-alkanethiols for n = 9 – 18, with black 

curves showing the Gaussian functions fitted to the histogram under Method 1. As 

expected, we found that Method 1 was insensitive to those deviations of log|J| from 

normality that could be classified as long tails and outliers (see Figure 3B and the 
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Introduction for explanations of these terms).  For example, µG and σG did not change 

when an exclusion rule was used to eliminate shorts (which are an extreme class of 

outlier).  The fitting algorithm finds the global minimum of the squared error between the 

data and the Gaussian function, but shorts (and other outliers) only create (or affect) local 

minima in the squared error; in the vast majority of cases, therefore, shorts have a 

negligible effect on the location of the global minimum, and do not need to be excluded 

prior to using Method 1. 

While tails and outliers were, as predicted by our statistical model, the predominant 

deviations of log|J| from normality in most histograms, there were two histograms that 

included qualitatively different types of anomalies: those of S(CH2)9CH3 and 

S(CH2)13CH3.  For S(CH2)9CH3, the normal component of the histogram of log|J| 

appeared to contain a “gap” in the data at approximately log|J| = -2.5.  The algorithm that 

fit the Gaussian function to the histogram disregarded the data to the left (towards low 

values of log|J|) of this gap as non-informative, but it is unclear whether this “choice” 

was correct, since the disregarded region contained many data.  The histogram of 

S(CH2)9CH3 may represent a failure of our statistical model, but it is difficult to be 

certain. 

The histogram of S(CH2)13CH3 seemed to contain not one, but two, major Gaussian 

peaks in close proximity.  The second apparent peak was more prominent than a simple 

tail, and the fitting algorithm used by Method 1 could not entirely ignore it.  In this case, 

Method 1 seemed to consider both peaks as informative data.  Again, it is unclear 

whether this “choice” was correct, but from these two cases, it is evident that a possible 
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weakness of Method 1 is its ambivalence in how it responds to deviations of log|J| from 

normality that cannot be classified as either long tails or outliers. 

For any fitted function, it is possible to calculate R2, the coefficient of determination 

(most fitting algorithms will give R2 as one of the outputs).xvi  While this parameter is not 

very useful in evaluating the “goodness” of a particular fit to a sample of data, it does 

convey some useful information.  The value of R2 can be interpreted as the fraction of the 

data that are explained by the fitted function, as opposed to the remainder of the data, 

which constitute random errors not explained by the function.xvi   

If our statistical model is correct in stating that all deviations of log|J| from normality 

are non-informative, then, in our case, R2 approximately represents the fraction of data in 

the sample that are informative, and (1 – R2) gives the fraction of data that are non-

informative.  The values of R2 for the Gaussian fits to the n-alkanethiols ranged from a 

low of 0.64 (for n = 10), to a high of 0.82 (n = 16). Values of R2 for all Gaussian fits are 

given in the Supporting Information.  According to our statistical model, therefore, 

approximately 64 – 82% of the measurements of log|J| shown in Figure 5 are informative, 

while the remaining 18 – 36% (a significant fraction of the each sample of log|J|) are non-

informative.  If this interpretation is correct, then it leads to two interesting, but tentative, 

conclusions: i) a significant fraction of our junctions fail in ways that disrupt the basic 

AgTS-SR//Ga2O3/EGaIn structure of the junction, yet do not cause shorts, and ii) despite 

these failures, careful statistical analysis can reconstruct the actual characteristics of 

charge transport through the junctions. 

Method 2: Median, Box and Whisker Plots, and Estimates of Scale.  The second 

method for estimating the location of a sample of log|J| uses the median (m).  The median 
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is definedxvi,xvii,xviii as the value for which 50% of the sample is greater than or equal to 

that value, and 50% of the sample is less than or equal to that value (i.e. the median is the 

50th percentile of the sample).xliii  

Method 2 includes two ways of expressing the dispersion of the sample: the 

interquartile range, and the (adjusted) median absolute deviation (σM).  The interquartile 

range is the difference between the lower and upper quartiles, which are the 25th and 

75th percentiles, respectively, of the sample.

 

xvi  The interquartile range is useful for 

visualizing the sample (see discussion of box-and-whisker plots below), but it does not 

attempt to express a standard deviation for the sample, so it cannot be compared directly 

to the Gaussian standard deviation (nor the arithmetic standard deviation; see next 

section).  For a true normal distribution, any estimate of the standard deviation will tend 

to be smaller than the interquartile range.  For comparison to the standard deviation, we 

use the adjusted median absolute deviation (eq. 3).xx 

                                             

 

σM =1.4826⋅ median x − m( )                                          (3) 

The quantity, median(|x – m|), is called the median absolute deviation, and the factor of 

1.4826 adjusts this quantity to correct for underestimation of the sample standard 

deviation. 

A common and useful method for visually conveying a large amount of information 

about a sample (including the median and interquartile range) in a compressed form is to 

use a box-and-whisker plot (Figure 6). This plot compares, side by side, the medians, 

interquartile ranges, and relative symmetry of samples of log|J| for all ten n-alkanethiols 

described in this paper.   
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Figure 6:  

Box and whisker plot of log|J/(A/cm2)| vs. n for n-alkanethiols.  The horizontal line 

within the box denotes the median of the distribution; the top and bottom of the box 

denote the upper and lower quartiles, respectively; the error bars (or “whiskers”) extend 

to the datum furthest from the box, up to a distance of 1.5 times the interquartile range 

(the height of the box), in either direction.  Points lying beyond this distance are defined 

as outliers, and appear as individual points.  Shorts (values of log|J| > 2.5) were excluded 

prior to calculating these statistics, to avoid unnecessarily skewing the distributions.  

Notches surrounding the median indicate the 95% confidence interval for the median. 
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Method 2 does not attempt to discriminate between different components of log|J| (as 

does Method 1, which uses our statistical model), but rather, follows the (probably 

informative) bulk of the data and resists extreme values that are probably non-

informative. The influence of any single datum on the median does not depend on its 

value, but on its ordinal position with respect to other data in the sample.  In fact, one 

could select any outlier (or even several of them) and move it arbitrarily far from the 

center of the distribution, without changing the median at all.xvi  This action would, 

however, cause the arithmetic mean (see below) to grow arbitrarily large, following the 

value of the outlier.  Long tails do affect the median, but not to the extent that they affect 

the arithmetic mean. For these reasons, Method 2 is less sensitive to outliers (and also 

long tails) than Method 3. 

Because the median responds relatively weakly (compared to the arithmetic mean) to 

tails and outliers, but does not ignore them (as does the Gaussian mean), we observed (in 

Figure 5) that the estimates of Method 2 typically lay between those of Method 1 and 

Method 3.  Although Method 2 is insensitive to the values of outliers, it is still affected 

by their presence.  We still, therefore, chose to exclude shorts (using the procedure 

described in the previous section) before calculating m, σM, and the interquartile range, 

because we know a priori that shorts are non-informative.  Again, while we defined 

shorts as values of log|J| > 2.5, the specific rule for excluding shorts will vary depending 

on what constitutes a short in a particular experimental system. 

Method 3: Arithmetic Mean and Standard Deviation. The third method for estimating 

the location and dispersion of log|J| involves calculating the arithmetic mean (the first 

moment, eq. 4a) and the arithmetic standard deviation (the square root of the second 
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moment about the arithmetic mean, eq. 4b) of the sample.xviii 

                                                         

 

µA =
1
N

xi
i=1

N

∑                                                    (4a) 

                                                  

 

σA =
1
N

xi − µA( )2

i=1

N

∑                                           (4b) 

Here, x is the sampled variable (log|J|, in this case), and xi is the ith observation (i.e. 

measurement) of x.  In general use, the term “mean” most commonly refers to the first 

moment.  With Method 1, even more so than with Method 2, it is essential to apply an 

exclusion rule to eliminate shorts, which bias the arithmetic mean much more strongly 

than the median.  

In general, Method 3 responded strongly to long tails and outliers in histograms of 

log|J|.  For the histograms shown in Figure 5, the arithmetic mean typically fell on the 

side of the peak with the longest tail, or the most outliers.  Also, since most histograms 

had tails and/or outliers, the arithmetic standard deviation was usually greater than the 

Gaussian standard deviation, a fact that also affected the widths of the respective 

confidence intervals given by the two methods. 

Confidence Intervals on Estimates of Location.  The widths of the distributions of 

log|J| in Figure 5 (expressed by their dispersions), give the misleading impression that the 

estimates of the location for these distributions are imprecise.  In fact, because of the 

large numbers of data in each distribution, the Gaussian mean, median, and arithmetic 

mean can all potentially be estimated with great precision, despite the dispersion in log|J|.  

An important way to express the precision and certainty of an estimated value is with a 

confidence interval.xvi,xvii,xviii  If the assumptions underlying the method of estimation are 

correct (an important qualifier), then a confidence interval gives, with a specified 
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confidence level (usually 95%, 99%, or 99.9%), the range within which the true value 

being estimated lies.  A 99.9% confidence level, for example, means that, if 1000 

samples were collected from a population with a known location, then for 999 of those 

1000 samples, the confidence interval surrounding the location estimated from the sample 

would contain the true location of the population. Figure 7 compares the 99.9% 

confidence intervals on the median, first moment, and Gaussian mean, for both odd and 

even n-alkanethiols, plotted against n. 

Confidence intervals are closely related to statistical tests, to the extent that every 

confidence interval on an estimated value specifies the “acceptance region” of a statistical 

test—i.e. a test that checks for a statistically significant difference between the estimate 

and some other value will conclude that there is a statistically significant difference if, 

and only if, the value lies outside the confidence interval.  Since every type of confidence 

interval corresponds to a different statistical test, there are many possible types of 

confidence interval that could be used.   

Confidence Intervals for Methods 1 and 3. A useful confidence interval for both the 

Gaussian mean and Arithmetic mean corresponds to the so-called Z-test.  Although the Z-

test technically performs less well than another test—the t-test—when the population 

standard deviation is unknown (as with our measurements), when the number of data is 

large, the results of the two tests asymptotically converge.xvi  There is some disagreement 

over what constitutes a “large” number of data, but for N > 50 the two tests are practically  

indistinguishable.  Since we, therefore, have large numbers of data, we choose to define 

confidence intervals based on the Z-test, because they are computationally simpler than 

those based on the t-test.  Both the Z-test and the t-test make three assumptions: i) that the 
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Figure 7:   

Comparison of the locations, and the precisions of those locations, estimated by Methods 

1 – 3 for n-alkanethiols (n = 9 – 18).  All error bars indicate the 99.9% confidence 

interval; choosing the 99.9% confidence level for individual confidence intervals allows 

the set of all pairwise comparisons, across the series of n-alkanethiols, to have a 

collective confidence level of 99% (see text).  The error bars do not signify the standard 

deviation (or other estimates of dispersion).  Upward-facing triangles indicate Method 1 

(the Gaussian mean), circles indicate Method 2 (median), and downward-facing triangles 

indicate Method 3 (Arithmetic mean).  Open symbols denote odd n-alkanethiols, while 

closed symbols denote even n-alkanethiols. 



 45 

 parameter being estimated (the Gaussian mean or the arithmetic mean) is normally 

distributed,xliv

The first assumption is rendered probable, even for non-normally distributed data, by 

the Central Limit Theorem.

 ii) that this normal distribution has mean equal to the population mean, and 

iii) that this normal distribution has standard deviation equal to s/N1/2 (where s is the 

population standard deviation).   

xvi  The second assumption is only as reliable as the method 

on which it is based.  For instance, it is probably closer to being true for Method 1 than 

for Method 3.  The third assumption depends heavily on the independence of 

measurements of log|J|.  If measurements of log|J| are correlated, or “clustered” (as they 

probably are), then this assumption has been violated, and N must be corrected, as we 

discuss below.  The extent to which our data violate this third assumption, and the 

magnitude of the correction needed to account for this violation, are two of the most 

crucial questions facing our analysis.  The answers to these questions could significantly 

affect the confidence intervals we estimate and, thus, the conclusions we are able to draw 

from the data.  For now, we give our best procedures, based on our current knowledge, 

with the cautionary note that further research is needed to address the independence of 

measurements of log|J|. 

For the Gaussian mean and arithmetic mean, the formula for confidence intervals 

based on the Z-test is given by eq. 5, in which σ represents either σG or σA, as 

appropriate.
 
 

                                                          

 

CI = zα 2
σ
Neff

                                        (5) 

The parameter zα/2 corresponds to the confidence level of (1 – α), and is the inverse of the 

cumulative distribution function for the standard normal distribution, evaluated at α/2 
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(zα/2 is, essentially, the number of standard deviations away from the mean one must go, 

in order to reach a value of α/2 in the normal probability density function, eq. 2).  Some 

common values of zα/2 are: z0.025 = 1.96 for the 95% confidence level (α = 0.05), 

z0.005 = 2.576 for the 99% confidence level (α = 0.01), and z0.0005 = 3.291 for the 99.9% 

confidence level (α = 0.001).  The value Neff is the effective sample size (eq. 6). 

                                                          

 

Neff = N
1− ρ
1+ ρ

                      (6) 

N is the number of values of log|J| (the sample size) for the given SAM, and ρ is the 

average, normalized autocorrelation (eq. 7) of all pairs of values of log|J|.xlv 

                                                       (7) 

If the individual values in a distribution are all independent and uncorrelated, then Neff 

is equal to N.  Because log|J| is measured within a hierarchy (of samples, tips, junctions, 

and traces), individual values are correlated, to some degree (as a result of the 

“clustering”, discussed in the Experimental Design).  For instance, two values of log|J| 

measured on different traces in the same junction tend to be more similar than two values 

of log|J| measured using different junctions, formed with different tips. Although 

measurement of many traces on the same junction, many junctions using the same tip, 

many tips on the same sample, and multiple samples per compound is necessary to guard 

against anomalies, this practice leads to artificially high values of N, because of the 

decreasing amount of new information that each subsequent measurement offers, in 

comparison with other measurements at the same level of the hierarchy.  To account for 

this tendency, ρ is defined so that if values of log|J| measured close to each other are 
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similar, Neff decreases and the confidence interval expands to correct for this 

“oversampling”.xlv  

We caution that using the corrected sample size, Neff, does not necessarily and 

automatically validate a confidence interval.  Further experiments are needed to 

determine whether this procedure offers a strong enough correction for the oversampling 

in our measurements, or whether a stronger correction is needed.  A good way to avoid 

the need for such a correction is to refrain from collecting data that are known, in 

advance, to be probably correlated to one another.  For instance, since two values of log|J| 

measured using the same junction will probably be correlated, it is advisable to collect 

only one, or a few, values of log|J| for each junction. 

Note that, because of the large numbers of data (even after correcting for 

oversampling), the confidence interval of, for instance, the Gaussian mean is far smaller 

than the interval defined by µG ± zα/2σG.  The latter is called a prediction interval, and 

denotes the range within which (1 – α)% of the actual data lie, in a normal distribution.xvi  

The confidence interval, by contrast, expresses the range of probable values of a 

particular estimate (e.g. of the location of the data), not of the data themselves.  In 

practical terms, the difference between a prediction interval (on a sample) and a 

confidence interval (on a statistic) means that, while individual measurements of log|J| 

may be widely scattered, the statistic (e.g. the Gaussian mean) describing the distribution 

can be estimated with great precision.   

Confidence Intervals for Method 2. A confidence interval for the median is defined by 

quantiles.xlvi  The q quantile (where q is a number between zero and one) of a distribution 

divides the distribution such that the fraction q of the data are less than or equal to the 
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quantile, and the fraction (1 – q) of the data are greater than or equal to the quantile.  For 

instance, the median is the quantile with q = 0.5 (i.e. the 50th percentile) and the lower 

and upper quartiles have q = 0.25 and 0.75, respectively (see Supporting Information for 

more details).  The 99.9% confidence interval for the median is defined by two quantiles, 

q– and q+, that are given by eq. 8a and 8b, respectively, where Neff and zα/2 are defined as 

above (zα/2 = 3.291 for the 99.9% confidence interval). 

                                                  

 

q− = 0.5 1−
zα 2

Neff

 

 
  

 

 
                                                (8a) 

                                                  

 

q+ = 0.5 1+
zα 2

Neff

 

 
  

 

 
                                                (8b) 

If Q(q) is the value of the q quantile (e.g. Q(0.5) = m, the median), then the 99.9% 

confidence interval on the median is (Q(q–) , Q(q+)).xlvi 

Confidence Intervals, Precision, and Accuracy.  As stated above, a confidence 

interval corresponds to the region in which the corresponding statistical test would fail to 

reject the null hypothesis (e.g. that there is no statistically significant difference between 

the estimated parameter and a fixed value) at the stated confidence level.xvi  Confidence 

intervals can be used to check for a statistically significant difference between the 

locations of two samples of log|J|.  If, for instance, the Gaussian means (µG1 and µG2) of 

log|J| for two compounds satisfy inequality 9, then one can conclude, at the specified 

confidence level, that the two values are different (i.e. the null hypothesis can be 

rejected).   

                                        

 

µG1 − µG2 > CI µG1( )2
+ CI µG2( )2

                                         (9)
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Note that this inequality can be satisfied (and there can be a statistically significant 

difference between two values) even if the two confidence intervals overlap somewhat.   

If the confidence intervals do not overlap, then there is automatically a statistically 

significant difference between the two values. For instance, comparing the 99.9% 

confidence intervals around µG for S(CH2)10CH3 and S(CH2)11CH3 shows that they do not 

overlap.  We conclude that the two values of µG are different (i.e. we reject the null 

hypothesis, that they are the same), at the 99.9% confidence level.  The confidence 

intervals around µG for S(CH2)8CH3 and S(CH2)9CH3, however, overlap and fail to 

satisfy inequality 9, so we cannot conclude that the two values are different (i.e. we 

cannot reject the null hypothesis).  

The confidence intervals in Figure 7 show, at a glance, the precision of the locations 

estimated by the Gaussian mean, median, and arithmetic mean.  The confidence intervals 

are generally narrow, indicating that µG, m, and µA are precise.  Figure 7 also shows, 

however, the extent to which Methods 1 – 3 can differ from one another.  In many cases, 

the 99.9% confidence intervals for these three statistics do not overlap.  Obviously, 

although µG, m, and µA are all precise, they cannot all be accurate estimators of the 

locations of the populations of AgTS-SR//Ga2O3/EGaIn junctions.   

As we argued in the Experimental Design section, the accuracy of each method 

depends on how it distinguishes between informative and non-informative data.  We have 

confidence in our statistical model—that informative measurements of log|J| are 

approximately normally distributed—and we believe, therefore, that Method 1 is 

accurate.  We also trust the accuracy of Method 2, because it does not respond strongly to 
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extreme values, which are likely to be non-informative.  We do not trust the accuracy of 

Method 3, because it is strongly influenced by data that are likely to be non-informative.   

The Odd-Even Effect Revisited: Confidence Intervals in Multiple Comparisons.  The 

difference between the three approaches is not superficial; they lead to statistically 

different conclusions about, for example, the difference (or similarity) between odd and 

even alkanethiols. In our previous paper,xiv we gave two statistical justifications for our 

claim that there is an odd-even effect—i.e. that odd and even alkanethiols could not both 

be described by eq. 1, using the same parameters.  One justification depended on 

statistical tests to compare the Gaussian means for adjacent n-alkanethiols (a procedure 

equivalent to comparing confidence intervals, as noted above).  In that paper, we used 

Student’s t-tests to compare µG, at the 95% confidence level, for every pair of adjacent 

alkanethiols (e.g. S(CH2)8CH3 and S(CH2)9CH3).  Because every odd alkanethiol except 

S(CH2)8CH3 had a lower µG than both of the adjacent even alkanethiols, and because 

each comparison was performed using a t-test at the 95% confidence level, we concluded, 

with 95% confidence, that there exists an odd-even effect.  We now know that, although 

our conclusion happened to be correct, the manner in which we arrived at that conclusion 

was flawed. 

Our argument in that paper suffered from two deficiencies: i) we did not use eqs. 6 

and 7 to correct the value of N for oversampling, and ii) we did not account for a pitfall 

that occurs when a single inference is supported by the repeated use of a statistical test.  

A statistical test with confidence level (1 – α) has a probability α of falsely rejecting the 

null hypothesis—i.e. concluding that a statistically significant difference exists, when in 

fact, it does not (a so-called “type I error”).xlvii  When c separate tests with confidence 
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level (1 – α) are performed, the probability of a type I error increases to 1 – (1 – α)c; thus, 

the confidence level of the entire set of c tests decreases to (1 – α)c.  Because we 

performed c = 9 separate t-tests (one for each adjacent pair in the range n = 9 – 18) at the 

95% confidence level, the true confidence level of our conclusion was only 63%.   

In order to achieve a true confidence level of (1 – α) for c tests, it is necessary to 

increase the confidence level for each individual test to (1 – αnew) = (1 – α)1/c; this 

procedure is called the Šidák correction.xlvii It is for this reason that we have chosen to 

plot, in Figure 7, the 99.9% confidence intervals: for c = 9, choosing (1 – αnew) = 0.999 

for each test leads to an overall confidence level, for all comparisons, of 99.1%.  With 

99.9% confidence intervals on each estimated location, we can then draw conclusions 

about the entire dataset at the 99% confidence level.  A procedure designed to safeguard 

against type I errors from performing several separate tests in a row is called a “multiple 

comparison” test.xvi 

In Figure 7, the odd-even effect is quite apparent when comparing the 99.9% 

confidence intervals around values of µG Gaussian means: there is a statistically 

significant zig-zag alternation in µG with increasing n, as opposed to the monotonic 

decrease expected from eq. 1 if there were no difference between odd and even n-

alkanethiols.  In four out of five cases, µG for a given odd n-alkanethiol is less than µG for 

both adjacent (even) alkanethiols (e.g. n = 11 has a lower µG than both n = 10 and n = 

12).  Using the Gaussian means, n = 11, 13, 15, and 17 all meet this criterion (but n = 9 

does not).  Comparing the medians, rather than the Gaussian means, of n-alkanethiols 

shows a statistically significant alternation in three out of five cases (n = 11, 15, and 17); 

still a majority. The odd-even effect becomes less apparent, however, when using the 
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arithmetic mean: only n = 11 and 17 meet the above criterion, while n = 9, 13, and 15 

fail.  If one had no guiding principle for choosing between these three methods of 

analysis, one might not conclude that there is an odd-even effect, from these results, at 

the 99% confidence level.  Based on our confidence in the accuracy of µG and m, and our 

lack of confidence in the accuracy of µA (as explained in the Experimental Design 

section), however, we choose to trust Methods 1 and 2 over Method 3.  We can, thus, 

affirm our previous conclusion that there is an odd-even effect.  

Our intent in discussing the dramatic differences between descriptive statistics is not 

to cast doubt on the existence of the odd-even effect (we now have even stronger 

evidence for it than we did in our previous paper; see below), but to highlight the fact that 

the choice of method for analyzing log|J| can have a large effect on statistical inferences 

based on confidence intervals or statistical tests.  When performing any statistical 

analysis, it is, therefore, important to i) identify the method(s) used to estimate the 

parameters being compared, ii) state the assumptions underlying the method(s), and iii) 

offer convincing justifications for those assumptions (or alternative methods, in case 

those assumptions are later shown to be incorrect). 

Calculating Trend Statistics: β and J0.  Because eq. 1 predicts a linear dependence of 

log|J| on d (or n), determining β and J0 for a series of compounds involves i) plotting 

values representing log|J| (at a given applied bias) against n, followed by ii) fitting this 

plot with a line (see Figure 8 for examples).  The slope of this line is -log(e)β, and the y-

intercept is log|J0|.  Accordingly, there are two areas in which Methods 1 – 4 differ from 

one another: i) the data used to represent log|J| in the plot of log|J| vs. n, and ii) the 

algorithm used to fit a line to this plot.   



 53 

Methods 1 – 3 and Trend Statistics.  Methods 1 – 3 use their respective estimators for 

location (µG, m, and µA), in order to represent log|J| for each compound in plots of log|J| 

vs. n. All of Methods 1 – 3 then use the same algorithm to fit their respective plots.  The 

linear, “least-squares” algorithm constructs the line that minimizes the sum of the squares 

of all errors (differences between values of log|J| and the fitted line).xxi  This algorithm is 

the standard algorithm used in most procedures for performing linear fits. 

For example, using Method 1, Figure 8A shows a plot of µG (at a bias of V = -0.5 V) 

vs. n for the ten n-alkanethiols, and indicates the linear fits (solid lines) for both odd and 

even n-alkanethiols.  The dotted lines in Figure 8A (as well as 7B and 7C) represent the 

so-called 99% confidence bands of the fitted function; these bands contain, with 99% 

confidence, the region within which lies the true linear fit to the data (these confidence 

bands are subject to the same assumption of independence, and the same caveat about 

correlation of data, as the confidence intervals defined above for single-compound 

statistics).xviii 

Because each method uses estimates of the location of log|J| for each compound in 

order to calculate trend statistics, each method carries forward, into the trend statistics it  

calculates, the assumptions and relative accuracy it had when estimating the location of 

log|J|.  Just as with single-compound statistics, therefore, Methods 1 and 2 are more 

accurate than Method 3 in their estimates of β and J0.   

Because Methods 1 – 3 compress all of the dispersion in the sample of log|J| into a 

single value for each compound, the choice of how to separate informative data from 

non-informative data has already been made.  As such, the sensitivity of the linear fitting 

algorithm to deviations of log|J| from normality is irrelevant in Methods 1 – 3, because  
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Figure 8:  

Comparison of Methods 1, 2, and 4a for determining β and J0 from measurements of 

log|J| for n-alkanethiols (n = 9 – 18).  A) Method 1: linear fits (solid lines), with least sum 

of squares due to error, of the Gaussian means (µG) of odd-numbered (black circles) and 

even-numbered (red “x”s) n-alkanethiols, respectively. Each line is fit to five data points 

(the fit, therefore, has three degrees of freedom).  Dotted lines show the 99% confidence 

bands of the each fit – these bands denote (with 99% confidence) the region that contains 

the true fit (i.e. the fit that gives the true values of β and J0).  Error bars representing the 

Gaussian standard deviation (σG) are shown for reference only and do not affect the fit.  

B) Method 2: linear fits (solid lines), with least sum of squares due to error, of the 

medians (m) of odd-numbered (black circles) and even-numbered (red “x”s) n-

alkanethiols, respectively.  Again, each line is fit to five data, and dotted lines indicate the 

99% confidence bands.  Error bars representing the adjusted median absolute deviation 

(σM) do not affect the fit.  C) Linear fits (solid lines), with least sum of absolute errors, of 

all values of log|J|, for odd (black circles) and even (red “x”s) n-alkanethiols.  Dotted 

lines indicate the 99% prediction bounds.  No weights were applied to the data; however, 

shorts (log|J| > 2.5) were excluded to avoid biasing the fits towards high values of log|J|.  

The plotted values of log|J| are the same as those in the histograms in Figure 4, but the 

large numbers of data cause many points to be superimposed on one another.  Thus, this 

representation visibly distorts (i.e. flattens) the data and disguises the concentration of 

data at the center of each distribution.
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Figure 8 (Continued) 
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those deviations have already been taken into account.  The step of calculating β and J0 

using Methods 1 – 3 is, therefore, relatively straightforward, but the use of only one 

datum per compound as the input to the fitting algorithm leads to estimates that are 

relatively imprecise, compared to those of Methods 4a and 4b. 

Method 4a and Trend Statistics.  Method 4a (along with Method 4b) does not use any 

summary, such as the location, to represent log|J| in plots of log|J| vs. n.  Instead, after 

excluding shorts from each sample, it plots all values of log|J| (at a given applied bias) for 

each compound (often resulting in thousands of data on a single plot; see Figure 8C).  

Both informative and non-informative data are included on this plot; thus, the algorithm 

used to fit a line to the plot must, in some way, distinguish between them.  Method 4a 

uses an algorithm that minimizes the sum of the absolute values (rather than the squares) 

of all errors,xxi whereas Method 4b employs the traditional, least-squares approach.  In 

this sense, Method 4a is somewhat analogous to Method 2, because the median of a 

sample also minimizes the sum of the absolute differences between the median and the 

data.xx  As such, Method 4a is less sensitive to extreme values than Method 4b (which is 

roughly analogous to Method 3), and is, therefore, more accurate.  Because the precision 

of a fitted line increases with approximately the square root of the number of data used to 

estimate these parameters,xxi Method 4a is much more precise than Methods 1 – 3, in 

estimating trend statistics. 

Method 4b and Trend Statistics.  Like Method 4a, Method 4b plots all values of log|J| 

(at a given applied bias) vs. n, after excluding shorts.  Method 4b differs from Method 4b, 

however, in that it uses a least-squares algorithm (that minimizes the sum of the squares 

of all errors) to fit a line to this plot.  In other words, the influence of an extreme value on 
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the fit is proportional to the square of its distance from the fit line.xxi  In this way, Method 

4b resembles Method 3, because the arithmetic mean of a sample minimizes the squares 

of the differences between itself and the data in the sample (i.e. the variance). Method 4b, 

therefore, responds strongly to extreme values (which are likely to be non-informative), 

and is not an accurate method for calculating β and J0.  We include a discussion of this 

method simply because it is a commonly used technique. 

Precision and Accuracy of Methods 1 – 4, with Respect to Trend Statistics.  One of 

the most significant factors affecting the accuracy of any fit, regardless of the method 

used, is the number of compounds for which the data have been collected (i.e. the number 

of distinct values of n). In our first publication on the use of Ga2O3/EGaIn electrodes,xii 

we reported a value of β that was erroneous, partly because we performed a linear fit 

using data from only three compounds.  Having a small range in the independent variable 

(n) gives inordinate influence to extreme values of log|J| on the slope and y-intercept of 

the fitted line, whereas having a large range in n helps to “fix” the fitted line at both ends 

and, therefore, to reduce the error in the position of the line. In our subsequent 

publication,xiv we were able to correct our earlier error by using five compounds, instead 

of three, to perform the fitting.  (Due to experimental limitations, we were only able to 

measure compounds for which n = 9 – 18; in other words, five odd n-alkanethiols and 

five even n-alkanethiols).  Even more important than choosing the correct method of 

analysis or collecting many values of log|J|, therefore, is measuring the full range of 

accessible compounds. 

Table 1 and Figure 9 compare the values of β and log|J0|, for V = -0.5 V, determined 

using each method, and give the 99% confidence intervals around these values. 
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Confidence intervals for β and log|J0| are defined in exactly the same way as confidence 

intervals for µG, m, and µA (and are subject to the same assumptions and caveats):xvi if, 

for example, β were determined 100 times from 100 different random samples of the 

same data, then 99 times out of 100, the 99% confidence interval around the estimated 

values of β will contain the true value of β.xvii Unlike with single-compound statistics, 

however, calculating confidence intervals on trend statistics involves mathematical 

techniques that are outside the scope of this paper to explain.  We used statistical 

software (the curve-fitting tool in MATLAB 7.10.0.499 R2010a) to calculate the 

confidence intervals in Table 1.  

Recall that, for single-compound statistics, the confidence intervals around, for 

example, µG and µA for the same compound often did not overlap.  It was, therefore, clear 

that Methods 1 – 3 were truly different from one another in their estimates of the location 

of log|J|.  With trend statistics, however, the confidence intervals of the values estimated 

by Methods 1 – 3 all overlap.  Paradoxically, even though we have already shown that 

Methods 1 – 3 importantly differ in their approach to the data, and in their estimates of 

single-compound statistics, when it comes to estimating trend statistics, the differences 

between these methods blur into statistical insignificance.  This vexing result arises 

because the differences between Methods 1 – 3 are overshadowed by the lack of 

precision associated with fitting a line to only five data (i.e. with three degrees of 

freedom).  Clearly, when Methods 1 – 3 pre-process the data (via single-compound 

statistics), much useful information is being lost. 

Methods 4a and 4b have much greater precision than Methods 1 – 3, because they fit 

many data (hundreds or thousands, with as many degrees of freedom).  For both β and  
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Table 1:  

Estimates of β and J0 using Method 4a are precise and agree with those of Method 2  

Method Dataset d.o.f.a R2 b log|J0/(A/cm2)| c β (nC
-1) c β (Å-1) c 

1 (Gaussian means) 
Odd         3 0.9870 2.4   ± 2.7 1.12   ± 0.47 0.89   ± 0.37 

Even         3 0.9916 2.7   ± 2.1 1.03   ± 0.34 0.81   ± 0.27 

2 (Medians) 
Odd 3 0.9936 2.1   ± 1.8 1.05   ± 0.31 0.84   ± 0.25 

Even 3 0.9883 2.4   ± 2.4 0.98   ± 0.38 0.77   ± 0.30 

3 (Arithmetic 

means) 

Odd         3 0.9939 1.7   ± 1.6 0.96   ± 0.28 0.76   ± 0.22 

Even         3 0.9596 1.9   ± 4.2 0.91   ± 0.67 0.72   ± 0.53 

4a (all data, least 

absolute errors) 

Odd 6383 0.8575 1.96 ± 0.12 1.033 ± 0.021 0.819 ± 0.017 

Even 10054 0.8539 2.53 ± 0.09 1.000 ± 0.015 0.792 ± 0.012 

4b (all data, least 

square errors) 

Odd   6383 0.3234 1.34 ± 0.26 0.903 ± 0.046 0.716 ± 0.036 

Even 10054 0.4277 1.99 ± 0.18 0.938 ± 0.030 0.744 ± 0.024 

 
a Degrees of freedom, with respect to error (not total degrees of freedom), for the fit.  For 

Methods 4a and 4b, the d.o.f. is less than the sum of N for odd (even) alkanethiols, 

because shorts have been excluded from the data, prior to fitting. 

b Coefficient of determination for the fit 

c Values are given with 99% confidence intervals  
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Figure 9:  

Values of β (n-1; top) and log|J0| (bottom), at V = -0.5 V, determined by all methods for 

odd (open symbols) and even (closed symbols) n-alkanethiols.  The error bars indicate 

the 99% confidence intervals. 
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log|J0|, the confidence intervals around the values estimated by Methods 4a and 4b do not 

overlap (Figure 9), and are roughly one order of magnitude smaller than the confidence 

intervals for Methods 1 – 3.  

We desire a method that is both accurate and precise for estimating trend statistics.  If 

our statistical model is valid, then the relative accuracy of the methods can be expressed 

in the following series: 1 > (2, 4a) >> (3, 4b); if our model is incorrect, then the series is: 

(2, 4a) > 1 >> (3, 4b).  Regardless of the validity of our model, the relative precision of 

the methods follows the series: (4a, 4b) > (1, 2, 3).  We can rule out Methods 3 and 4b on 

the grounds of inaccuracy, and Method 2 on the grounds that it is less precise, but no 

more accurate, than Method 4a.  We are then faced with a choice between Method 1 and 

Method 4a.  If our statistical model is correct, then Method 1 is more accurate than 

Method 4a.  These two methods, however, agree reasonably well—both β and log|J0| are 

lower for Method 4a than for Method 1, but the large confidence intervals for Method 1 

completely engulf the values of Method 4a (Figure 9)—so if one method is reasonably 

accurate, then by extension, both methods are reasonably accurate.  Since, for these 

particular data, the accuracy of Method 4a has been checked by comparison to Method 1, 

we have grounds for using Method 4a in this specific case.  

The coefficient of determination (R2) does not measure precision or accuracy.  Table 

1 gives the coefficient of determination, R2, for each linear fit.  The value of R2 is not, in 

general, a guide to the precision or accuracy of a fit.xvi,xviii  Rather, it represents the 

fraction of the variation in the data that is explained by the model used to fit the data (eq. 

1, in this case).   



 62 

For Methods 1 – 3, the data being explained are not the primary data (log|J|), but the 

locations (µG, m, or µA) estimated for each compound.  The fact that, for example, 

Method 1 yields large values of R2 means that changing the length of the alkanethiol used 

to form the SAM explains the vast majority of the variation in the Gaussian mean of 

log|J| across the series of n-alkanethiols.   

The relatively low values of R2 for Methods 4a and 4b reflect the fact that the data 

being explained are no longer pre-processed single-compound statistics, but rather all 

measurements of log|J|.  According to the values of R2 for Methods 4a and 4b, therefore, 

changing the length of the alkanethiol used to form the SAM explains only some of the 

variation observed in all measurements of log|J| across the series of alkanethiols.  This 

fact is unsurprising, because we are already aware that defects (which are largely 

independent of n) in AgTS-SR//Ga2O3/EGaIn junctions explain a significant portion of the 

dispersion of individual samples of log|J|.  Furthermore, many of the data in each sample 

of log|J| are non-informative, and we should hope that the Simmons model would not 

explain these data. 

While the coefficient of determination can convey useful information, it is not 

necessarily an indicator of either the accuracy or the precision of the method used.  Its 

value should not, therefore, determine the choice of method. 

Method 4a identifies J0 as the major source of the odd-even effect. Methods 1 – 3 are 

too imprecise (for estimating trend statistics) to locate the origin of the odd-even effect in 

either parameter of the Simmons model (eq. 1). As with single-compound statistics, 

statistical tests can be performed on trend statistics by comparing the confidence intervals 

of two values.xvi  Table 1 shows that, for each of Methods 1 – 3, the confidence intervals 
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around the values of β for odd and even alkanethiols overlap.  The same is true of log|J0|.  

Using Methods 1 – 3, therefore, one cannot reject the null hypothesis that the values of β 

(or log|J0|) for odd and even alkanethiols are the same. 

Method 4a is, however, precise enough to offer an instructive comparison between 

odd and even n-alkanethiols, with respect to J0 and β.  In order to perform a comparison, 

we could simply observe that the 99% confidence intervals on the two values of, for 

example, log|J0| do not overlap.  To achieve a quantitative comparison, however, we use 

the confidence intervals on both values of log|J0| to calculate the probability (p) of the 

null hypothesis that log|J0,odd| = log|J0,even|.xvi  We explain the procedure for calculating p, 

given two values with confidence intervals, in the Supporting Information.  Using this 

procedure, we find that p = 1.34 × 10-4 for the null hypothesis, so we can reject it, and 

conclude, with over 99% confidence, that log|J0,odd| < log|J0,even|.  Note that, if future 

experiments show the need for a stronger correction for correlation among values of 

log|J| than that provided by equations 6 and 7, then the value of p would increase, and the 

confidence level of this conclusion would be weakened (perhaps significantly).  For now, 

we tentatively conclude that there is a statistically significant difference between 

log|J0,odd| and log|J0,even|. 

On the other hand, with respect to β, the null hypothesis that βodd = βeven has p = 0.20, 

so it cannot be rejected at the 99% confidence level. (See Table 2 for p values for all 

methods).  According to Method 4a, therefore, the difference in J0 is significant (i.e. 

certain), but there is no significant difference in β. 

The fact that the difference in J0 is significant does not automatically mean that this 

difference is sufficient to explain the magnitude odd-even effect.  To investigate this  
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Table 2:  

Results (p-values) from t-tests show that a difference in J0 between odd and even 

alkanethiols gives rise to the odd-even effect (when using Method 4a) 

 
Method p(βodd = βeven)a p(J0,odd = J0,even)b 

1 (Gaussian means) 0.87 0.93 

2 (Medians) 0.88 0.93 

3 (Arithmetic means) 0.94 0.97 

4a (all data, least absolute errors) 0.20 1.34 × 10-4 

4b (all data, least square errors) 0.52 0.041 

a Probability of the null hypothesis: that the values of β for odd and even n-alkanethiols 

are the same. 

b Probability of the null hypothesis: that the values of J0 for odd and even n-alkanethiols 

are the same. 



 65 

question, it is necessary to compare the magnitude of the difference in J0 (log|J0,even| – 

log|J0,odd| = 0.57) with the magnitude of the difference between log|J| for odd and even 

alkanethiols.  The difference in log|J| can be estimated by comparing the values of the 

linear fits to each dataset at the midpoint of the series (n = 13.5).  The linear fit to the 

even n-alkanethiols interpolates a value at n = 13.5 of log|Jeven| = -3.33, while the linear 

fit to the odd n-alkanethiols interpolates a value of log|Jodd| = -4.10 at the same point.  

The magnitude of the odd-even effect is 0.77 (i.e. log|Jodd| – log|Jeven| = 0.77, or 

Jeven/Jodd = 5.89), at the point n = 13.5.  Method 4a estimates that the difference in log|J0|, 

therefore, accounts for about 74% of the odd-even effect at the midpoint of the series.  At 

the beginning of the series (n = 9), the difference in log|J0| explains ~ 81% of the odd-

even effect, while this difference explains only ~ 68% of the odd-even effect at the end of 

the series (n =18), because the linear fits diverge as n increases.  We conclude, therefore, 

that J0 accounts for about 70 – 80% of the odd-even effect, among the n-alkanethiols we 

have measured. The remaining 20 – 30% of the odd-even effect is, so far, unexplained; it 

may be due to β (i.e. in the case that there is a difference in β, but our analysis is not 

powerful enough to detect it), or to other factors that the Simmons model fails to take into 

account. 

 

Conclusions 

Difficult problems can be made tractable with careful statistical analysis.  

Analyzing charge transport through SAMs is a difficult problem for two principal 

reasons. i) Measurements of log|J| are noisy and contain artifacts that are difficult to 

separate from real data (Figure 3). ii) The dispersion in each sample of log|J| can be a 
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significant fraction of the range of log|J| across a series of SAMs (Figure 2); as a result, 

the spread in the data threatens to drown out the effect being studied.  Improvements in 

experimental techniques will probably mitigate, but not eliminate, these problems.  

Artifacts are inevitable when contacting an area of several hundred µm2 on a disordered 

monolayer that is ~ 1 nm thick.  Furthermore, even if the average thickness of the SAM 

varies by only 1 C–C in either direction, J will vary over more than an order of 

magnitude.   

The primary purpose of this paper is to show that, in the face of such difficulties, 

careful statistical analysis can still extract useful information and generate confident 

conclusions, or at least bound uncertainty and lack of confidence.  What is required, in 

order to draw useful conclusions from the data, is: i) accuracy, which requires an idea 

(better yet, a statistical model) of how to distinguish data that convey information about 

charge transport through the SAM from data that do not, and ii) precision, which requires 

large numbers of data, in order to reduce the size of confidence intervals and give power 

to statistical tests. 

Proper design of data collection is important to accuracy.  In this paper, we have 

discussed two ways in which the collection of data, prior to any analysis, can influence 

the accuracy of the conclusions.  i) Because measurements of log|J| are not completely 

independent of one another (e.g. two values of log|J| measured using the same 

AgTS-SR//Ga2O3/EGaIn junction will be more correlated than two values of log|J| 

measured using different junctions), there is a tendency to overestimate the sample size, 

and to underestimate the widths of confidence intervals.  We have discussed a possible 

correction for this tendency using equations 6 and 7, but the best way to escape this 
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pitfall is to avoid collecting correlated data in the first place.  In our previous paper,xiv we 

collected approximately 40 values of J (i.e. ~ 20 J(V) traces, each giving two values of J 

at each voltage) for each junction, but as a result of the current analysis, we now realize 

that this number was far too large. The first J(V) trace is often noisy, so it may be 

desirable to collect more than one trace, but we recommend collecting about three, and no 

more than five, J(V) traces (i.e. six to ten values of J) for each junction.  We are currently 

testing and refining specific recommendations related to the protocol for collecting data; 

we will publish these results in a separate paper.  

ii) Using few compounds (values of n) for determining trend statistics can lead to 

estimates that appear precise, but are probably inaccurate.  Increasing the range of values 

of n over which data are collected can dramatically improve the accuracy of the linear fit 

to a plot of log|J| vs. n.  It is, therefore, desirable to use as wide a range of n as the 

experimental system will allow, in order to ensure accurate results.  Given the choice 

between measuring a greater number of compounds or a greater number of data for each 

compound, always choose the former; 103 measurements across five compounds will give 

more accurate results than 104 measurements across three compounds.  Even though the 

latter approach will lead to greater precision than the former, precision without accuracy 

is useless. 

Methods 1, 2, and 4a are all acceptably accurate, while Methods 3 and 4b are not.  

The accuracy of each method of statistical analysis depicted in Figure 4 depends on the 

correctness of the assumptions on which it rests, with respect to how to interpret real 

data.  Method 1 assumes that informative measurements of log|J|, for which the Simmons 

model (eq. 1) is a valid description, constitute a normal distribution, and that any 
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deviations of log|J| from normality are not informative.  Methods 2 and 4a assume that 

informative measurements of log|J| (regardless of how they are distributed) represent the 

bulk of the data, and that non-informative measurements comprise extreme values.  These 

two assumptions are similar, but the first assumption is stronger than the second, in that it 

rises to the level of a true statistical model by positing a (normal) shape for the 

distribution of log|J|.  We have offered justifications for this assumption (see 

Experimental Design), and we are reasonably confident that it is correct, but we 

recognize that it could still fail.  In light of this possibility, we have included Methods 2 

and 4a in order to add flexibility to our analysis.  If future research overturns the 

assumption that log|J| is normally distributed, then the conclusions of this paper will still 

be valid, because they are supported by Methods 2 and 4a, which do not assume 

normality. 

While we favor Method 1 (fitting Gaussian functions to histograms of log|J|) over 

Method 2 (using the median and interquartile range), they are probably both accurate 

enough to use in reporting single-compound statistics (i.e. the location and dispersion of 

samples of log|J|, as well as confidence intervals that allow comparisons between two 

compounds).  For trend statistics (e.g. β and J0) that involve fitting plots of log|J| vs. n, 

Method 4a (plotting all data, and fitting to minimize the sum of the absolute values of 

errors) is just as accurate as Method 2, and about an order of magnitude more precise.  

We, therefore, recommend using Method 4a for calculating trend statistics, as long as the 

results do not contradict those of Methods 1 and 2.  We do not recommend using Method 

3 (the arithmetic mean and standard deviation) or Method 4b (fitting lines to log|J| vs. n 
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using an ordinary, least-squares algorithm), because these methods respond too strongly 

to extreme values of log|J|, which probably do not represent informative data. 

Alongside these general recommendations, we must emphasize that the choice of 

method for statistical analysis should be made on a case-by-case basis, after careful 

consideration of factors influencing the data.  For example, in a recent analysis of charge 

transport through molecules with different degrees of conjugation, Chiechi et al.xlviii 

xiii

encountered a situation where Method 1 was clearly superior to Method 2.  They 

measured values of J for these molecules approached the range (J ≈ 102 A/cm2) where the 

resistance ,xiv of the Ga2O3/EGaIn electrode begins to limit charge transport through the 

junction.  This artifact, which invalidated the Simmons model as a description of J above 

this point, caused the high end of the histogram of log|J| to be truncated, and the 

distribution to deviate strongly from normality.  Method 1 ignored the deviation from 

normality and essentially extrapolated the missing tail of the histogram, in order to 

reconstruct an accurate picture of charge transport based on the Simmons model.  In other 

cases, however, there may be reasons to avoid Method 1 and use Method 2 instead.  One 

advantage of Method 2 is that it can summarize many data in a clear and visually 

accessible format: the box-and-whisker plot (Figure 6). 

Precision depends on large numbers of data. The precision of any method of 

statistical analysis is most clearly seen in the confidence intervals it produces.  The width 

of a confidence interval is proportional to the dispersion in the data, and inversely 

proportional to the square root of the sample size (assuming independence of the 

measurements).  In other words, when the spread in measurements of log|J| is large, many 

data are required to achieve precise estimates of parameters.  In this paper, we were able 
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to detect effects with magnitudes smaller than the spread in samples of log|J| because we 

had approximately 103 data for each compound.  It was these large samples, and the 

precise confidence intervals they afforded, that allowed us to demonstrate the odd-even 

effect and assign its origin primarily to J0, as opposed to β. Analyses that seek larger 

effects, or operate on data with smaller dispersions, than what we have done here, may 

require much fewer than 103 measurements for each compound.  As a rule of thumb, 

however, we suggest collecting at least ~ 200 data per compound, in a manner that 

minimizes correlation between measurements. 

One advantage of using AgTS-SR//Ga2O3/EGaIn junctions is that they are able to 

generate data quickly and conveniently, to enable precise statistical analysis.  For 

example, the minimum requirement of ~200 data can be fulfilled for one compound in 

less than one day.  The two primary factors that enable this rapid collection of data with 

Ga2O3/EGaIn are i) the relatively high yield (~ 80%) of non-shorting junctions, and ii) 

the ability to measure in air, under ambient conditions.  For these reasons, Ga2O3/EGaIn 

electrodes are an improvement over electrodes based on hanging drops of Hg, and have 

an advantage over direct evaporation of metal electrodes onto SAMs.  Conductive 

polymers can be used to form contacts with SAMs in high yields (> 90%)xxvii and with 

many junctions in parallel, for rapid measurements.   

The updated values of β and J0 in this paper are precise.  Using Method 4a, we have 

improved our estimates of β and J0 over those in our previous paper comparing odd and 

even alkanethiols.xiv  At an applied bias of V = -0.5V, these updated values (Table 1) are 

βodd = 1.033 ± 0.021 nC
-1 (0.819 ± 0.017 Å-1), βeven = 1.000 ± 0.015 nC

-1 

(0.792 ± 0.012 Å-1), log|J0,odd/(A/cm2)| = 1.96 ± 0.12, and 
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log|J0,even/(A/cm2)| = 2.53 ± 0.09.  The uncertainties in these values denote the 99% 

confidence intervals, whose validity is contingent on how well we have corrected for 

correlation between values of log|J| within each sample.  It is rare to find uncertainties 

reported for values of β and J0 in the literature, but we are confident that our values are 

among the most precise to date.  Elsewhere,xli we have conducted a meta-analysis of 

values of β and J0 reported in the literature, and identified a consensus for β in the range 

of 1.0 – 1.1 nC
-1 (0.8 – 0.9 Å-1; the range is approximate) from among many different 

systems for measuring charge transport through large-area, SAM-based junctions. 

(Reports of β and J0 in the literature do not differentiate between odd and even 

alkanethiols).  Our values agree with this consensus (although they lie towards the low 

end of the range), and we are, therefore, confident that our values are not only precise, 

but also accurate.  For J0, we could not identify a consensus across all experimental 

systems, but there was a loose agreement among several techniques in the range of J0 = 

10 – 103 A/cm2 (log|J0| = 1 – 3).  Our values of J0 lie within this range. 

J0 explains the majority of the odd-even effect. The precision of method 4a allows us 

to conclude, with a level of confidence that is high (p = 1.34 × 10-4) but tempered by the 

potential effects of correlation between measurements, that there is a difference in J0 

between odd and even n-alkanethiols.  With respect to β, we cannot claim a difference 

between odd and even n-alkanethiols (p = 0.20).  We have shown that the difference in 

log|J0| between odd and even n-alkanethiols (log|J0,even| − log|J0,odd| = 0.57) was large 

enough to explain approximately 70 – 80% of the magnitude of the odd-even effect.  As β 

is the only other parameter in eq. 1 besides J0, a difference in β between odd and even n-

alkanethiols is currently the strongest candidate to explain the remaining 20 – 30% of the 
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odd-even effect, but we emphasize caution, since we cannot conclude that the difference 

in β is even significant, let alone large.  The unexplained portion of the odd-even effect 

may simply be the result of uncertainties in β and J0 (determining J0 does, after all, 

require a long extrapolation), or deficiencies in the Simmons model.  

The value of J0 represents the contributions to charge transport of the electrodes and 

the interfaces between the electrodes and the SAM.  Since the electrodes and 

(presumably) the AgTS-S interface are identical for both odd and even alkanethiols, the 

observation of a significant and large difference in J0 implies that odd and even 

alkanethiols form different van der Waals interfaces with the Ga2O3/EGaIn electrode.xlix

i

  

Indeed, because of the small tilt angle (the angle of the trans-extended alkyl chain with 

respect to the surface normal) of SAMs of n-alkanethiols on Ag (~ 12°),  the terminal –

CH3 group at the surface of a (trans-extended) SAM should have a different orientation, 

depending on whether the number of carbon atoms in the alkyl chain is odd or even.  For 

odd n-alkanethiols, the terminal C–C bond is expected to be roughly perpendicular to the 

surface, whereas for even n-alkanethiols, the terminal C–C bond should be approximately 

parallel to the plane of the surface.xlix  This subtle difference is apparently large enough to 

affect the wavefunction of charges tunneling through the AgTS-SR//Ga2O3/EGaIn 

junction—and careful statistical analysis is powerful enough to distinguish this effect 

from the myriad other variables (defects) that affect charge transport. The fact that such a 

small change in the surface of the SAM has a noticeable effect on charge transport is a 

testament to the (by now, well-known) importance of interfaces in molecular electronics.  

Future experiments may settle the question of whether there is a significant difference 

in β between odd and even n-alkanethiols, and, if so, how large it is.  A significant 
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difference in β would indicate that the tunneling barrier posed by a SAM of odd n-

alkanethiols differs (in shape or height) from that posed by a SAM of even n-

alkanethiols.  The most we can conclude, at the moment, is that any difference between 

odd and even n-alkanethiols with respect to the tunneling barrier (β) has less of an 

influence on charge transport than the difference with respect to the van der Waals 

interface. We currently have no explanation for why a terminal C–C bond parallel to the 

surface would be more favorable to charge transport than a terminal C–C bond 

perpendicular to the surface, but we identify this problem for theoretical study. 
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