363 research outputs found

    Fusoselect: cell-cell fusion activity engineered by directed evolution of a retroviral glycoprotein

    Get PDF
    Membrane fusion plays a key role in many biological processes including vesicle trafficking, synaptic transmission, fertilization or cell entry of enveloped viruses. As a common feature the fusion process is mediated by distinct membrane proteins. We describe here ‘Fusoselect', a universal procedure allowing the identification and engineering of molecular determinants for cell-cell fusion-activity by directed evolution. The system couples cell-cell fusion with the release of retroviral particles, but can principally be applied to membrane proteins of non-viral origin as well. As a model system, we chose a γ-retroviral envelope protein, which naturally becomes fusion-active through proteolytic processing by the viral protease. The selection process evolved variants that, in contrast to the parental protein, mediated cell-cell fusion in absence of the viral protease. Detailed analysis of the variants revealed molecular determinants for fusion competence in the cytoplasmic tail (CT) of retroviral Env proteins and demonstrated the power of Fusoselec

    Fusoselect: cell–cell fusion activity engineered by directed evolution of a retroviral glycoprotein

    Get PDF
    Membrane fusion plays a key role in many biological processes including vesicle trafficking, synaptic transmission, fertilization or cell entry of enveloped viruses. As a common feature the fusion process is mediated by distinct membrane proteins. We describe here ‘Fusoselect’, a universal procedure allowing the identification and engineering of molecular determinants for cell–cell fusion-activity by directed evolution. The system couples cell–cell fusion with the release of retroviral particles, but can principally be applied to membrane proteins of non-viral origin as well. As a model system, we chose a γ-retroviral envelope protein, which naturally becomes fusion-active through proteolytic processing by the viral protease. The selection process evolved variants that, in contrast to the parental protein, mediated cell–cell fusion in absence of the viral protease. Detailed analysis of the variants revealed molecular determinants for fusion competence in the cytoplasmic tail (CT) of retroviral Env proteins and demonstrated the power of Fusoselect

    M+D: conceptual guidelines for compiling a materials library

    Get PDF
    This article proposes to present a study conducted by the Raw Materials research group, the results of which comprise the conceptual guidelines for compiling an M+D material library. The study includes the topic, materials and design taking the impact of the changes that came into being in the post industrial era on project methodologies and the search for information regarding materials. Taking into account the importance and complexity that these relationships have taken on currently, we have studied the issue of materials based on Manzini (1983) and Ashby and Johnson (2002). Afterward different databases and materials libraries located in the Brazil, the United States, France and Italy geared toward design professionals and students were analyzed to understand what information and means of access to them were available. The project methodologies were approached based on Löbach (1991), BĂŒrdeck (1994), Schulmann (1994), Baxter (1998), Dantas (1998 and 2005) and Papanek (1995 and 2000). This study sought to identify the key elements of the role of materials in the project process today, to serve as a parameter for the analysis of the models studied. A comparative analysis of the models investigated enabled identification of positive and negative aspects to adapt to the needs previously mentioned and identify conceptual guidelines for compiling a collection of materials for use in design projects. Keywords: Design, Materials, Project Methodology, Library</p

    The Coronary Microcirculation in Hamster-to-Rat Cardiac Xenografts

    Get PDF
    BACKGROUND The aim of this study was to establish a new experimental model to directly analyse the coronary microcirculation in cardiac xenografts. METHODS Intravital fluorescence microscopy (IVM) of the subepicardial microcirculation in heterotopically transplanted hamster-to-rat cardiac xenografts was performed at 30 and 90 min of reperfusion. We quantitatively assessed the microcirculatory perfusion characteristics as well as the interactions of leukocytes and platelets with the endothelium of postcapillary coronary venules in non-sensitised as well as sensitised recipients. RESULTS In this first experimental IVM study of cardiac xenografts, we successfully visualised the subepicardial microcirculation, i.e. feeding arterioles, nutritive capillaries and draining postcapillary venules, during reperfusion. Leukocyte-endothelial and platelet-endothelial cell interactions could be quantified. In the non-sensitised group, the myocardial microcirculation remained stable during the observation period of 90 min, whereas in the sensitised group, xenografts were rejected immediately. CONCLUSIONS We established a model for the assessment of the microcirculatory dysfunction and inflammation during ischaemia/reperfusion injury in hamster-to-rat cardiac xenografts

    CD20 and CD19 targeted vectors induce minimal activation of resting B lymphocytes

    Get PDF
    B lymphocytes are an important cell population of the immune system. However, until recently it was not possible to transduce resting B lymphocytes with retro- or lentiviral vectors, making them unsusceptible for genetic manipulations by these vectors. Lately, we demonstrated that lentiviral vectors pseudotyped with modified measles virus (MV) glycoproteins hemagglutinin, responsible for receptor recognition, and fusion protein were able to overcome this transduction block. They use either the natural MV receptors, CD46 and signaling lymphocyte activation molecule (SLAM), for cell entry (MV-LV) or the vector particles were further modified to selectively enter via the CD20 molecule, which is exclusively expressed on B lymphocytes (CD20-LV). It has been shown previously that transduction by MV-LV does not induce B lymphocyte activation. However, if this is also true for CD20-LV is still unknown. Here, we generated a vector specific for another B lymphocyte marker, CD19, and compared its ability to transduce resting B lymphocytes with CD20-LV. The vector (CD19ds-LV) was able to stably transduce unstimulated B lymphocytes, albeit with a reduced efficiency of about 10% compared to CD20-LV, which transduced about 30% of the cells. Since CD20 as well as CD19 are closely linked to the B lymphocyte activation pathway, we investigated if engagement of CD20 or CD19 molecules by the vector particles induces activating stimuli in resting B lymphocytes. Although, activation of B lymphocytes often involves calcium influx, we did not detect elevated calcium levels. However, the activation marker CD71 was substantially up-regulated upon CD20-LV transduction and most importantly, B lymphocytes transduced with CD20-LV or CD19ds-LV entered the G1b phase of cell cycle, whereas untransduced or MV-LV transduced B lymphocytes remained in G0. Hence, CD20 and CD19 targeting vectors induce activating stimuli in resting B lymphocytes, which most likely renders them susceptible for lentiviral vector transduction

    Emissionsvermeidung oder Anpassung an den Klimawandel: Welche Zukunft hat die Klimapolitik?

    Get PDF
    Die gegenwĂ€rtige im Kyoto-Protokoll festgelegte Klimapolitik versucht vorrangig, dem Klimawandel mit einer Strategie der Emissionsverminderung zu begegnen. Die dort festgelegten Reduktionsziele fĂŒr den CO2-Ausstoß sind fĂŒr viele LĂ€nder nicht mehr zu realisieren. Und einige LĂ€nder, die zu den grĂ¶ĂŸten Emittenten gehören, vor allem die USA, haben sich dem Kyoto-Protokoll nicht angeschlossen. Sollte die Klimapolitik in Zukunft weniger auf Emissionsvermeidung und eher auf eine Anpassung an die ErderwĂ€rmung zielen?

    Association of Leptin Gene DNA Methylation With Diagnosis and Treatment Outcome of Anorexia Nervosa

    Get PDF
    Epigenetic alterations are increasingly implicated in the pathophysiology of anorexia nervosa (AN) but are as yet poorly understood. We investigated possible associations between the leptin gene (LEP) and the leptin receptor gene (LEPR) DNA promoter methylation and (1) a diagnosis of AN and (2) outcome after a 10 months psychotherapeutic outpatient treatment. 129 (LEPR: n = 135) patients with AN were investigated during the large scale psychotherapeutic Anorexia Nervosa Treatment Outpatient Study (ANTOP) trial, compared to 117 (LEPR: n = 119) age and height matched, normal-weight healthy controls. Blood samples were taken at baseline, the end of therapy (40 weeks) and the 12-months follow-up and compared to controls. Methylation was measured in whole blood via bisulfite sequencing. Within the promoter region 32 (LEP) and 39 CpG sites (LEPR) were analyzed. Two key findings were observed. First, LEP and LEPR methylation at baseline were lower in patients compared to controls (LEP: [%] AN: 30.94 ± 13.2 vs. controls: 34.53 ± 14.6); LEPR ([%] AN: 3.73 ± 5.4 vs. controls: 5.22 ± 8.3, mixed linear models: both P &lt; 0.001). Second, lower DNA methylation of the LEP promoter, with a dynamic upregulation during treatment, was associated with a full recovery in AN patients (% change from baseline to follow-up in full recovery patients: +35.13% (SD: 47.56); mixed linear model: P &lt; 0.0001). To test for potential predictive properties of mean LEP DNA methylation a LEP DNA methylation cut-off (31.25% DNA methylation) was calculated, which significantly discriminated full recovery vs. full syndrome AN patients. This cut-off was then tested in a group of previously unclassified patients (missing follow-up data of the Structured Interview for Anorexic and Bulimic disorders; n = 33). Patients below the cut-off (31.25% LEP DNA methylation) showed an increase in BMI over time, while those above the cut-off had a decrease in BMI (ANOVA at the 12-months follow-up: P = 0.0142). To our knowledge, this is the first study investigating epigenetic alterations in AN over time. Our findings indicate that LEP DNA methylation might be involved in the disease course of AN

    Drivers and distribution of henipavirus-induced syncytia: what do we know?

    Get PDF
    Syncytium formation, i.e., cell–cell fusion resulting in the formation of multinucleated cells, is a hallmark of infection by paramyxoviruses and other pathogenic viruses. This natural mechanism has historically been a diagnostic marker for paramyxovirus infection in vivo and is now widely used for the study of virus-induced membrane fusion in vitro. However, the role of syncytium formation in within-host dissemination and pathogenicity of viruses remains poorly understood. The diversity of henipaviruses and their wide host range and tissue tropism make them particularly appropriate models with which to characterize the drivers of syncytium formation and the implications for virus fitness and pathogenicity. Based on the henipavirus literature, we summarized current knowledge on the mechanisms driving syncytium formation, mostly acquired from in vitro studies, and on the in vivo distribution of syncytia. While these data suggest that syncytium formation widely occurs across henipaviruses, hosts, and tissues, we identified important data gaps that undermined our understanding of the role of syncytium formation in virus pathogenesis. Based on these observations, we propose solutions of varying complexity to fill these data gaps, from better practices in data archiving and publication for in vivo studies, to experimental approaches in vitro

    Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory

    Full text link
    The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30 to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy deposit per area is determined from the radio pulses at each observer position and is interpolated using a two-dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge-excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy -- corrected for geometrical effects -- is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. We find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO
    • 

    corecore