8,924 research outputs found

    A Particle-based Multiscale Solver for Compressible Liquid-Vapor Flow

    Full text link
    To describe complex flow systems accurately, it is in many cases important to account for the properties of fluid flows on a microscopic scale. In this work, we focus on the description of liquid-vapor flow with a sharp interface between the phases. The local phase dynamics at the interface can be interpreted as a Riemann problem for which we develop a multiscale solver in the spirit of the heterogeneous multiscale method, using a particle-based microscale model to augment the macroscopic two-phase flow system. The application of a microscale model makes it possible to use the intrinsic properties of the fluid at the microscale, instead of formulating (ad-hoc) constitutive relations

    Universal Quantum Computation with Continuous-Variable Cluster States

    Get PDF
    We describe a generalization of the cluster-state model of quantum computation to continuous-variable systems, along with a proposal for an optical implementation using squeezed-light sources, linear optics, and homodyne detection. For universal quantum computation, a nonlinear element is required. This can be satisfied by adding to the toolbox any single-mode non-Gaussian measurement, while the initial cluster state itself remains Gaussian. Homodyne detection alone suffices to perform an arbitrary multi-mode Gaussian transformation via the cluster state. We also propose an experiment to demonstrate cluster-based error reduction when implementing Gaussian operations.Comment: 4 pages, no figure

    Limits of economy and fidelity for programmable assembly of size-controlled triply-periodic polyhedra

    Full text link
    We propose and investigate an extension of the Caspar-Klug symmetry principles for viral capsid assembly to the programmable assembly of size-controlled triply-periodic polyhedra, discrete variants of the Primitive, Diamond, and Gyroid cubic minimal surfaces. Inspired by a recent class of programmable DNA origami colloids, we demonstrate that the economy of design in these crystalline assemblies -- in terms of the growth of the number of distinct particle species required with the increased size-scale (e.g. periodicity) -- is comparable to viral shells. We further test the role of geometric specificity in these assemblies via dynamical assembly simulations, which show that conditions for simultaneously efficient and high-fidelity assembly require an intermediate degree of flexibility of local angles and lengths in programmed assembly. Off-target misassembly occurs via incorporation of a variant of disclination defects, generalized to the case of hyperbolic crystals. The possibility of these topological defects is a direct consequence of the very same symmetry principles that underlie the economical design, exposing a basic tradeoff between design economy and fidelity of programmable, size controlled assembly.Comment: 15 pages, 5 figures, 6 supporting movies (linked), Supporting Appendi

    Human Performance Models of Pilot Behavior

    Get PDF
    Five modeling teams from industry and academia were chosen by the NASA Aviation Safety and Security Program to develop human performance models (HPM) of pilots performing taxi operations and runway instrument approaches with and without advanced displays. One representative from each team will serve as a panelist to discuss their team s model architecture, augmentations and advancements to HPMs, and aviation-safety related lessons learned. Panelists will discuss how modeling results are influenced by a model s architecture and structure, the role of the external environment, specific modeling advances and future directions and challenges for human performance modeling in aviation

    Scalable Focused Ion Beam Creation of Nearly Lifetime-Limited Single Quantum Emitters in Diamond Nanostructures

    Get PDF
    The controlled creation of defect center---nanocavity systems is one of the outstanding challenges for efficiently interfacing spin quantum memories with photons for photon-based entanglement operations in a quantum network. Here, we demonstrate direct, maskless creation of atom-like single silicon-vacancy (SiV) centers in diamond nanostructures via focused ion beam implantation with ∼32\sim 32 nm lateral precision and <50< 50 nm positioning accuracy relative to a nanocavity. Moreover, we determine the Si+ ion to SiV center conversion yield to ∼2.5%\sim 2.5\% and observe a 10-fold conversion yield increase by additional electron irradiation. We extract inhomogeneously broadened ensemble emission linewidths of ∼51\sim 51 GHz, and close to lifetime-limited single-emitter transition linewidths down to 126±13126 \pm13 MHz corresponding to ∼1.4\sim 1.4-times the natural linewidth. This demonstration of deterministic creation of optically coherent solid-state single quantum systems is an important step towards development of scalable quantum optical devices

    Bulk AlInAs on InP(111) as a novel material system for pure single photon emission

    Get PDF
    In this letter, we report on quantum light emission from bulk AlInAs grown on InP(111) substrates. We observe indium rich clusters in the bulk Al0:48In0:52As (AlInAs), resulting in quantum dot-like energetic traps for charge carriers, which are confirmed via cross-sectional scanning tunnelling microscopy (XSTM) measurements and 6-band k•p simulations. We observe quantum dot (QD)-like emission signals, which appear as sharp lines in our photoluminescence spectra at near infrared wavelengths around 860 nm, and with linewidths as narrow as 50 meV. We demonstrate the capability of this new material system to act as an emitter of pure single photons as we extract g(2)-values as low as g(2)/cw (0) = 0:05+0:17/-0:05 for continuous wave (cw) excitation and g (2) pulsed, corr. = 0:24 ± 0:02 for pulsed excitation.PostprintPeer reviewe
    • …
    corecore