482 research outputs found

    A serendipitous all sky survey for bright objects in the outer solar system

    Get PDF
    We use seven yearʼs worth of observations from the Catalina Sky Survey and the Siding Spring Survey covering most of the northern and southern hemisphere at galactic latitudes higher than 20° to search for serendipitously imaged moving objects in the outer solar system. These slowly moving objects would appear as stationary transients in these fast cadence asteroids surveys, so we develop methods to discover objects in the outer solar system using individual observations spaced by months, rather than spaced by hours, as is typically done. While we independently discover eight known bright objects in the outer solar system, the faintest having V=19.8±0.1,V=19.8\pm 0.1, no new objects are discovered. We find that the survey is nearly 100% efficient at detecting objects beyond 25 AU for V19.1V\lesssim 19.1 (V18.6V\lesssim 18.6 in the southern hemisphere) and that the probability that there is one or more remaining outer solar system object of this brightness left to be discovered in the unsurveyed regions of the galactic plane is approximately 32%

    Gravitational Field of Fractal Distribution of Particles

    Get PDF
    In this paper we consider the gravitational field of fractal distribution of particles. To describe fractal distribution, we use the fractional integrals. The fractional integrals are considered as approximations of integrals on fractals. Using the fractional generalization of the Gauss's law, we consider the simple examples of the fields of homogeneous fractal distribution. The examples of gravitational moments for fractal distribution are considered.Comment: 14 pages, LaTe

    Perspectives in Global Helioseismology, and the Road Ahead

    Get PDF
    We review the impact of global helioseismology on key questions concerning the internal structure and dynamics of the Sun, and consider the exciting challenges the field faces as it enters a fourth decade of science exploitation. We do so with an eye on the past, looking at the perspectives global helioseismology offered in its earlier phases, in particular the mid-to-late 1970s and the 1980s. We look at how modern, higher-quality, longer datasets coupled with new developments in analysis, have altered, refined, and changed some of those perspectives, and opened others that were not previously available for study. We finish by discussing outstanding challenges and questions for the field.Comment: Invited review; to appear in Solar Physics (24 pages, 6 figures

    Luminous Red Novae: Stellar Mergers or Giant Eruptions?

    Get PDF
    We present extensive datasets for a class of intermediate-luminosity optical transients known as luminous red novae. They show double-peaked light curves, with an initial rapid luminosity rise to a blue peak (at -13 to -15 mag), which is followed by a longer-duration red peak that sometimes is attenuated, resembling a plateau. The progenitors of three of them (NGC 4490-2011OT1, M 101-2015OT1, and SNhunt248), likely relatively massive blue to yellow stars, were also observed in a pre-eruptive stage when their luminosity was slowly increasing. Early spectra obtained during the first peak show a blue continuum with superposed prominent narrow Balmer lines, with P Cygni profiles. Lines of Fe II are also clearly observed, mostly in emission. During the second peak, the spectral continuum becomes much redder, H alpha is barely detected, and a forest of narrow metal lines is observed in absorption. Very late-time spectra (similar to 6 months after blue peak) show an extremely red spectral continuum, peaking in the infrared (IR) domain. H alpha is detected in pure emission at such late phases, along with broad absorption bands due to molecular overtones (such as TiO, VO). We discuss a few alternative scenarios for luminous red novae. Although major instabilities of single massive stars cannot be definitely ruled out, we favour a common envelope ejection in a close binary system, with possibly a final coalescence of the two stars. The similarity between luminous red novae and the outburst observed a few months before the explosion of the Type IIn SN 2011ht is also discussed

    Surface-focused Seismic Holography of Sunspots: I. Observations

    Full text link
    We present a comprehensive set of observations of the interaction of p-mode oscillations with sunspots using surface-focused seismic holography. Maps of travel-time shifts, relative to quiet-Sun travel times, are shown for incoming and outgoing p modes as well as their mean and difference. We compare results using phase-speed filters with results obtained with filters that isolate single p-mode ridges, and further divide the data into multiple temporal frequency bandpasses. The f mode is removed from the data. The variations of the resulting travel-time shifts with magnetic-field strength and with the filter parameters are explored. We find that spatial averages of these shifts within sunspot umbrae, penumbrae, and surrounding plage often show strong frequency variations at fixed phase speed. In addition, we find that positive values of the mean and difference travel-time shifts appear exclusively in waves observed with phase-speed filters that are dominated by power in the low-frequency wing of the p1 ridge. We assess the ratio of incoming to outgoing p-mode power using the ridge filters and compare surface-focused holography measurements with the results of earlier published p-mode scattering measurements using Fourier-Hankel decomposition.Comment: Solar Physics, accepte

    KOI-3158: The oldest known system of terrestrial-size planets

    Get PDF
    The first discoveries of exoplanets around Sun-like stars have fueled efforts to find ever smaller worlds evocative of Earth and other terrestrial planets in the Solar System. While gas-giant planets appear to form preferentially around metal-rich stars, small planets (with radii less than four Earth radii) can form under a wide range of metallicities. This implies that small, including Earth-size, planets may have readily formed at earlier epochs in the Universe's history when metals were far less abundant. We report Kepler spacecraft observations of KOI-3158, a metal-poor Sun-like star from the old population of the Galactic thick disk, which hosts five planets with sizes between Mercury and Venus. We used asteroseismology to directly measure a precise age of 11.2 ± 1.0 Gyr for the host star, indicating that KOI-3158 formed when the Universe was less than 20 % of its current age and making it the oldest known system of terrestrial-size planets. We thus show that Earth-size planets have formed throughout most of the Universe's 13.8-billion-year history, providing scope for the existence of ancient life in the Galaxy

    Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model

    Get PDF
    We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO's second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h095%=3.47×10-25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering. © 2019 American Physical Society

    Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background

    Get PDF
    The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we search for a stochastic background of generically polarized gravitational waves. We find no evidence for a background of any polarization, and place the first direct bounds on the contributions of vector and scalar polarizations to the stochastic background. Under log-uniform priors for the energy in each polarization, we limit the energy densities of tensor, vector, and scalar modes at 95% credibility to Ω0T<5.58×10-8, Ω0V<6.35×10-8, and Ω0S<1.08×10-7 at a reference frequency f0=25 Hz. © 2018 American Physical Society
    corecore