27,400 research outputs found

    Spin-Driven Nematic Instability of the Multi-Orbital Hubbard Model: Application to Iron-Based Superconductors

    Full text link
    Nematic order resulting from the partial melting of density-waves has been proposed as the mechanism to explain nematicity in iron-based superconductors. An outstanding question, however, is whether the microscopic electronic model for these systems -- the multi-orbital Hubbard model -- displays such an ordered state as its leading instability. In contrast to usual electronic instabilities, such as magnetic and charge order, this fluctuation-driven phenomenon cannot be captured by the standard RPA method. Here, by including fluctuations beyond RPA in the multi-orbital Hubbard model, we derive its nematic susceptibility and contrast it with its ferro-orbital order susceptibility, showing that its leading instability is the spin-driven nematic phase. Our results also demonstrate the primary role played by the dxyd_{xy} orbital in driving the nematic transition, and reveal that high-energy magnetic fluctuations are essential to stabilize nematic order in the absence of magnetic order.Comment: 8 pages, 6 figure

    High temperature thermoelectric efficiency in Ba8Ga16Ge30

    Get PDF
    The high thermoelectric figure of merit (zT) of Ba8Ga16Ge30 makes it one of the best n-type materials for thermoelectric power generation. Here, we describe the synthesis and characterization of a Czochralski pulled single crystal of Ba8Ga16Ge30 and polycrystalline disks. Measurements of the electrical conductivity, Hall effect, specific heat, coefficient of thermal expansion, thermal conductivity, and Seebeck coefficient were performed up to 1173 K and compared with literature results. Dilatometry measurements give a coefficient of thermal expansion of 16×10^−6 K^−1 up to 1175 K. The trend in electronic properties with composition is typical of a heavily doped semiconductor. The maximum in the thermoelectric figure of merit is found at 1050 K with a value of 0.8. The correction of zT due to thermal expansion is not significant compared to the measurement uncertainties involved. Comparing the thermoelectric efficiency of segmented materials, the effect of compatibility makes Ba8Ga16Ge30 more efficient than the higher zT n-type materials SiGe or skutterudite CoSb3

    A diffuse radar scattering model from Martian surface rocks

    Get PDF
    Remote sensing of Mars has been done with a variety of instrumentation at various wavelengths. Many of these data sets can be reconciled with a surface model of bonded fines (or duricrust) which varies widely across the surface and a surface rock distribution which varies less so. A surface rock distribution map from -60 to +60 deg latitude has been generated by Christensen. Our objective is to model the diffuse component of radar reflection based on this surface distribution of rocks. The diffuse, rather than specular, scattering is modeled because the diffuse component arises due to scattering from rocks with sizes on the order of the wavelength of the radar beam. Scattering for radio waves of 12.5 cm is then indicative of the meter scale and smaller structure of the surface. The specular term is indicative of large scale surface undulations and should not be causally related to other surface physical properties. A simplified model of diffuse scattering is described along with two rock distribution models. The results of applying the models to a planet of uniform fractional rock coverage with values ranging from 5 to 20% are discussed

    Spectrally pure heralded single photons by spontaneous four-wave mixing in a fiber: reducing impact of dispersion fluctuations

    Get PDF
    We model the spectral quantum-mechanical purity of heralded single photons from a photon-pair source based on nondegenerate spontaneous four-wave mixing taking the impact of distributed dispersion fluctuations into account. The considered photon-pair-generation scheme utilizes pump-pulse walk-off to produce pure heralded photons and phase matching is achieved through the dispersion properties of distinct spatial modes in a few-mode silica step-index fiber. We show that fiber-core-radius fluctuations in general severely impact the single-photon purity. Furthermore, by optimizing the fiber design we show that generation of single photons with very high spectral purity is feasible even in the presence of large core-radius fluctuations. At the same time, contamination from spontaneous Raman scattering is greatly mitigated by separating the single-photon frequency by more than 32 THz from the pump frequency

    Ultraviolet downconverting phosphor for use with silicon CCD imagers

    Get PDF
    The properties and application of a UV downconverting phosphor (coronene) to silicon charge coupled devices are discussed. Measurements of the absorption spectrum have been extended to below 1000 A, and preliminary results indicate the existence of useful response to at least 584 A. The average conversion efficiency of coronene was measured to be ~20% at 2537 A. Imagery at 3650 A using a backside illuminated 800 X 800 CCD coated with coronene is presented

    Identifying Student Difficulties with Entropy, Heat Engines, and the Carnot Cycle

    Get PDF
    We report on several specific student difficulties regarding the Second Law of Thermodynamics in the context of heat engines within upper-division undergraduates thermal physics courses. Data come from ungraded written surveys, graded homework assignments, and videotaped classroom observations of tutorial activities. Written data show that students in these courses do not clearly articulate the connection between the Carnot cycle and the Second Law after lecture instruction. This result is consistent both within and across student populations. Observation data provide evidence for myriad difficulties related to entropy and heat engines, including students' struggles in reasoning about situations that are physically impossible and failures to differentiate between differential and net changes of state properties of a system. Results herein may be seen as the application of previously documented difficulties in the context of heat engines, but others are novel and emphasize the subtle and complex nature of cyclic processes and heat engines, which are central to the teaching and learning of thermodynamics and its applications. Moreover, the sophistication of these difficulties is indicative of the more advanced thinking required of students at the upper division, whose developing knowledge and understanding give rise to questions and struggles that are inaccessible to novices

    Validation and analysis of regional present-day climate and climate change simulations over Europe

    No full text
    In the European Commission (EC) project "Regionalization of Anthropogenic Climate Change Simulations, RACCS, recently terminated, 11 European institutions have carried out tests of dynamical and statistical regionalization techniques. The outcome of the "dynamical part" of the project, utilizing a series of high resolution LAMs and a variable resolution global model (all of which we shall refer to as RCMs, Regional Climate Models), is presented here. The per- formance of the dqterent LAMs had first, in a preceding EC project, been tested with "perfect" boundary forcing fields (ECMWF analyses) and also multi-year present-day climate simula- tions with AMIP "perfect ocean " or mixed layer ocean GCM boundary conditions had been validated against available climatological data. The present report involves results of vali- dation and analysis of RCM present-day climate simulations and anthropogenic climate change experiments. Multi-year (5 - 30 years) present-day climate simulations have been per- formed with resolutions between 19 and 70 km (grid lengths) and with boundary conditions from the newest CGCM simulations. The climate change experiments involve various 2xCO2 - ]xCO2 transient greenhouse gas experiments and in one case also changing sulphur aerosols. A common validation and inter-comparison was made at the coordinating institution, MPIfor Meteorology. The validation of the present-day climate simulations shows the importance of systematic errors in the low level general circulation. Such errors seem to induce large errors in precipitation and surface air temperature in the RCMs as well as in the CGCMs providing boundary conditions. Over Europe the field of systematic errors in the mean sea level pressure (MSLP) usually involve an area of too low pressure, often in the form of an east-west trough across Europe with too high pressure to the north and south. New storm-track analyses confirm that the areas of too low pressure are caused by enhanced cyclonic activity and similarly that the areas of too high pressure are caused by reduced such activity. The precise location and strength of the extremes in the MSLP error field seems to be dependent on the physical param- eterization package used. In model pairs sharing the same package the area of too low pressure is deepened further in the RCM compared to the corresponding CGCM, indicating an increase of the excessive cyclonic activity with increasing resolution. From the experiments performed it seems not possible to decide to what extent the systematic errors in the general circulation are the result of local errors in the physical parameterization schemes or remote errors trans- mitted to the European region via the boundary conditions. Additional errors in precipitation and temperature seems to be due to direct local effects of errors in certain parameterization schemes and errors in the SSTs taken from the CGCMs. For all seasons many biases are fOund to be statistically significant compared to estimates of the internal model variability of the time- slice mean values. In the climate change experiments statistically significant European mean temperature changes which are large compared to the corresponding biases are found. How- ever, the changes in the deviations from the European mean temperature as well as the changes in precipitation are only partly sign wcan ce and are of the same order of magnitude or smaller than the corresponding biases found in the present-day climate simulations. Cases of an inter- action between the systematic model errors and the radiative forcing show that generally the errors are not canceling out when the changes are computed. Therefore, reliable regional cli- mate changes can only be achieved after model improvements which reduce their systematic errors sufficiently. Also in future RCM experiments sujiciently long time-slices must be used in order to obtain statistically sign ijicant climate changes on the sub-continental scale aimed at with the present regionalization technique

    Casimir energy density in closed hyperbolic universes

    Full text link
    The original Casimir effect results from the difference in the vacuum energies of the electromagnetic field, between that in a region of space with boundary conditions and that in the same region without boundary conditions. In this paper we develop the theory of a similar situation, involving a scalar field in spacetimes with compact spatial sections of negative spatial curvature.Comment: 10 pages. Contribution to the "Fifth Alexander Friedmann International Seminar on Gravitation and Cosmology," Joao Pessoa, Brazil, 2002. Revised version, with altered Abstract and one new referenc

    CMB map derived from the WMAP data through Harmonic Internal Linear Combination

    Full text link
    We are presenting an Internal Linear Combination (ILC) CMB map, in which the foreground is reduced through harmonic variance minimization. We have derived our method by converting a general form of pixel-space approach into spherical harmonic space, maintaining full correspondence. By working in spherical harmonic space, spatial variability of linear weights is incorporated in a self-contained manner and our linear weights are continuous functions of position over the entire sky. The full correspondence to pixel-space approach enables straightforward physical interpretation on our approach. In variance minimization of a linear combination map, the existence of a cross term between residual foregrounds and CMB makes the linear combination of minimum variance differ from that of minimum foreground. We have developed an iterative foreground reduction method, where perturbative correction is made for the cross term. Our CMB map derived from the WMAP data is in better agreement with the WMAP best-fit Λ\LambdaCDM model than the WMAP team's Internal Linear Combination map. We find that our method's capacity to clean foreground is limited by the availability of enough spherical harmonic coefficients of good Signal-to-Noise Ratio (SNR).Comment: The whole sky CMB map, which is derived from the WMAP 5 year data through our method, is available in HEALPix FITS format at http://www.nbi.dk/~jkim/hilc The paper with higher resolution images also available at http://www.nbi.dk/~jkim/hil
    • …
    corecore