57 research outputs found

    Surface charge, fluidity, and calcium uptake by rat intestinal brush-border vesicles

    Get PDF
    AbstractBiological membrane outer surfaces are negatively charged and interact with positively charged calcium ion during calcium uptake. Positively charged polycations such as polyarginine bind to membranes with high affinity, displacing bound calcium from the membrane. We tested the effect of polyarginine on uptake of calcium by brush-border membrane vecicles and examined the responses in terms of membrane fluidity by electron paramagnetic resonance (EPR). Polyarginine inhibited the saturable component of calcium uptake by a mechanism combining inhibition characteristics of strontium (competitive) and magnesium (non-competitive). Unlike the inhibition of non-saturable calcium uptake by strontium and magnesium, polyarginine increased kD, the rate constant for non-saturable calcium uptake, by a concentration dependent mechanism. These effects of polyarginine on calcium uptake were associated with decreased membrane fluidity at the uptake temperature. These findings are consistent with a role for surface negative charge in determining both saturable and non-saturable calcium uptake. Increased membrane fluidity is associated with decreased saturable and increased non-saturable calcium uptake. Although increased fluidity might be involved in the increased kD for non-saturable uptake, the concentration-specific stimulating effect of polyarginine suggests a gating mechanism

    Long-peptide therapeutic vaccination against CRPV-induced papillomas in HLA-A2.1 transgenic rabbits

    Get PDF
    AbstractLong peptide immunization is a promising strategy to clear established tumors. In the current study, we investigated the therapeutic effect of a naturally existing long peptide that contained two HLA-A2.1 restricted epitopes (CRPVE1/149–157 and CRPVE1/161–169) from cottontail rabbit papillomavirus (CRPV) E1 using our CRPV/HLA-A2.1 transgenic rabbit model. A universal Tetanus Toxin helper motif (TT helper) was tagged at either the N-terminus or the carboxyl-terminus of this long peptide and designated as TT-E1 peptide and E1 peptide-TT, respectively. Four groups of HLA-A2.1 transgenic rabbits were infected with wild type CRPV DNA. Three weeks post-infection, the rabbits were immunized four times with TT-E1 peptide, E1 peptide only, E1 peptide-TT or TT-control peptide with two-week intervals between immunizations. Tumor outgrowth was monitored and recorded weekly. After the third booster immunization, tumors on two of the four E1 peptide-TT immunized rabbits began to shrink. One animal from this group was free of tumors at the termination of the study. The mean papilloma size of E1 peptide-TT immunized rabbits was significantly smaller when compared with that of the three other groups (P<0.05, one way ANOVA analysis). It is interesting that E1 peptide-TT vaccination not only stimulated stronger T cell mediated immune responses but also stronger antibody generations. We conclude that the location of a TT helper motif tagged at the long peptide vaccine is critical for the outcome of therapeutic responses to persistent tumors in our HLA-A2.1 transgenic rabbit model

    Mouse Papillomavirus L1 and L2 Are Dispensable for Viral Infection and Persistence at Both Cutaneous and Mucosal Tissues.

    Get PDF
    Papillomavirus L1 and L2, the major and minor capsid proteins, play significant roles in viral assembly, entry, and propagation. In the current study, we investigate the impact of L1 and L2 on viral life cycle and tumor growth with a newly established mouse papillomavirus (MmuPV1) infection model. MmuPV1 L1 knockout, L2 knockout, and L1 plus L2 knockout mutant genomes (designated as L1ATGko-4m, L2ATGko, and L1-L2ATGko respectively) were generated. The mutants were examined for their ability to generate lesions in athymic nude mice. Viral activities were examined by qPCR, immunohistochemistry (IHC), in situ hybridization (ISH), and transmission electron microscopy (TEM) analyses. We demonstrated that viral DNA replication and tumor growth occurred at both cutaneous and mucosal sites infected with each of the mutants. Infections involving L1ATGko-4m, L2ATGko, and L1-L2ATGko mutant genomes generally resulted in smaller tumor sizes compared to infection with the wild type. The L1 protein was absent in L1ATGko-4m and L1-L2ATGko mutant-treated tissues, even though viral transcripts and E4 protein expression were robust. Therefore, L1 is not essential for MmuPV1-induced tumor growth, and this finding parallels our previous observations in the rabbit papillomavirus model. Very few viral particles were detected in L2ATGko mutant-infected tissues. Interestingly, the localization of L1 in lesions induced by L2ATGko was primarily cytoplasmic rather than nuclear. The findings support the hypothesis that the L2 gene influences the expression, location, transport, and assembly of the L1 protein in vivo

    CRPV Genomes with Synonymous Codon Optimizations in the CRPV E7 Gene Show Phenotypic Differences in Growth and Altered Immunity upon E7 Vaccination

    Get PDF
    Papillomaviruses use rare codons relative to their hosts. Recent studies have demonstrated that synonymous codon changes in viral genes can lead to increased protein production when the codons are matched to those of cells in which the protein is being expressed. We theorized that the immunogenicity of the virus would be enhanced by matching codons of selected viral genes to those of the host. We report here that synonymous codon changes in the E7 oncogene are tolerated in the context of the cottontail rabbit papillomavirus (CRPV) genome. Papilloma growth rates differ depending upon the changes made indicating that synonymous codons are not necessarily neutral. Immunization with wild type E7 DNA yielded significant protection from subsequent challenge by both wild type and codon-modified genomes. The reduction in growth was most dramatic with the genome containing the greatest number of synonymous codon changes

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Abstracts from the Food Allergy and Anaphylaxis Meeting 2016

    Get PDF

    The Mouse Papillomavirus Infection Model

    No full text
    The mouse papillomavirus (MmuPV1) was first reported in 2011 and has since become a powerful research tool. Through collective efforts from different groups, significant progress has been made in the understanding of molecular, virological, and immunological mechanisms of MmuPV1 infections in both immunocompromised and immunocompetent hosts. This mouse papillomavirus provides, for the first time, the opportunity to study papillomavirus infections in the context of a small common laboratory animal for which abundant reagents are available and for which many strains exist. The model is a major step forward in the study of papillomavirus disease and pathology. In this review, we summarize studies using MmuPV1 over the past six years and share our perspectives on the value of this unique model system. Specifically, we discuss viral pathogenesis in cutaneous and mucosal tissues as well as in different mouse strains, immune responses to the virus, and local host-restricted factors that may be involved in MmuPV1 infections and associated disease progression

    Codon changes were done at random and include those for numerous amino acids spanning the entire E7 gene.

    No full text
    <p>The location (amino acid number within the E7 gene) and identity of all codon changes is shown as well as the amino acids whose codons were changed. Genomes were built sequentially. Thus, E7/14 contains all the changes in E7/8 plus 6 unique to itself. E7/18 contains all E7/14 changes plus 4 unique to itself. E7/22 contains all of the previous changes plus 4 unique to itself.</p

    Location of codon changes in H. CRPV E7.

    No full text
    <p>Each of the codon changes introduced into H. CRPV E7 is noted. The changes were cumulative. For example E7/14 contains all the changes in E7/8 plus 6 unique to itself; E7/18 contains the 14 in E7/14 plus 4 unique to itself; E7/22 contains all of the changes noted. Upper lines represent wild type E7 sequence and lower lines, the codon-modified sequences with changes noted in bold. Single letter notations are used for the amino acids. The numbers above selected amino acids identify the genome containing the codon modification of that amino acid.</p

    FSCAN analysis of cells transfected with E7 expression constructs.

    No full text
    <p>Expression of E7 protein was detected in immortalized rabbit cells transfected with expression constructs of the E7 genes and subjected to FSCAN analysis. All analyses were done in duplicate. E7/18 and E7/22 showed the highest expression levels.( p<0.05, unpaired student t test), when compared to the control.</p
    corecore