31,866 research outputs found

    On the choice of parameters in solar structure inversion

    Get PDF
    The observed solar p-mode frequencies provide a powerful diagnostic of the internal structure of the Sun and permit us to test in considerable detail the physics used in the theory of stellar structure. Amongst the most commonly used techniques for inverting such helioseismic data are two implementations of the optimally localized averages (OLA) method, namely the Subtractive Optimally Localized Averages (SOLA) and Multiplicative Optimally Localized Averages (MOLA). Both are controlled by a number of parameters, the proper choice of which is very important for a reliable inference of the solar internal structure. Here we make a detailed analysis of the influence of each parameter on the solution and indicate how to arrive at an optimal set of parameters for a given data set.Comment: 14 pages, 15 figures. Accepted for publication on MNRA

    Finiteness and Dual Variables for Lorentzian Spin Foam Models

    Full text link
    We describe here some new results concerning the Lorentzian Barrett-Crane model, a well-known spin foam formulation of quantum gravity. Generalizing an existing finiteness result, we provide a concise proof of finiteness of the partition function associated to all non-degenerate triangulations of 4-manifolds and for a class of degenerate triangulations not previously shown. This is accomplished by a suitable re-factoring and re-ordering of integration, through which a large set of variables can be eliminated. The resulting formulation can be interpreted as a ``dual variables'' model that uses hyperboloid variables associated to spin foam edges in place of representation variables associated to faces. We outline how this method may also be useful for numerical computations, which have so far proven to be very challenging for Lorentzian spin foam models.Comment: 15 pages, 1 figur

    Positivity of Spin Foam Amplitudes

    Full text link
    The amplitude for a spin foam in the Barrett-Crane model of Riemannian quantum gravity is given as a product over its vertices, edges and faces, with one factor of the Riemannian 10j symbols appearing for each vertex, and simpler factors for the edges and faces. We prove that these amplitudes are always nonnegative for closed spin foams. As a corollary, all open spin foams going between a fixed pair of spin networks have real amplitudes of the same sign. This means one can use the Metropolis algorithm to compute expectation values of observables in the Riemannian Barrett-Crane model, as in statistical mechanics, even though this theory is based on a real-time (e^{iS}) rather than imaginary-time (e^{-S}) path integral. Our proof uses the fact that when the Riemannian 10j symbols are nonzero, their sign is positive or negative depending on whether the sum of the ten spins is an integer or half-integer. For the product of 10j symbols appearing in the amplitude for a closed spin foam, these signs cancel. We conclude with some numerical evidence suggesting that the Lorentzian 10j symbols are always nonnegative, which would imply similar results for the Lorentzian Barrett-Crane model.Comment: 15 pages LaTeX. v3: Final version, with updated conclusions and other minor changes. To appear in Classical and Quantum Gravity. v4: corrects # of samples in Lorentzian tabl
    corecore