We describe here some new results concerning the Lorentzian Barrett-Crane
model, a well-known spin foam formulation of quantum gravity. Generalizing an
existing finiteness result, we provide a concise proof of finiteness of the
partition function associated to all non-degenerate triangulations of
4-manifolds and for a class of degenerate triangulations not previously shown.
This is accomplished by a suitable re-factoring and re-ordering of integration,
through which a large set of variables can be eliminated. The resulting
formulation can be interpreted as a ``dual variables'' model that uses
hyperboloid variables associated to spin foam edges in place of representation
variables associated to faces. We outline how this method may also be useful
for numerical computations, which have so far proven to be very challenging for
Lorentzian spin foam models.Comment: 15 pages, 1 figur