1,163 research outputs found
Charge injection instability in perfect insulators
We show that in a macroscopic perfect insulator, charge injection at a
field-enhancing defect is associated with an instability of the insulating
state or with bistability of the insulating and the charged state. The effect
of a nonlinear carrier mobility is emphasized. The formation of the charged
state is governed by two different processes with clearly separated time
scales. First, due to a fast growth of a charge-injection mode, a localized
charge cloud forms near the injecting defect (or contact). Charge injection
stops when the field enhancement is screened below criticality. Secondly, the
charge slowly redistributes in the bulk. The linear instability mechanism and
the final charged steady state are discussed for a simple model and for
cylindrical and spherical geometries. The theory explains an experimentally
observed increase of the critical electric field with decreasing size of the
injecting contact. Numerical results are presented for dc and ac biased
insulators.Comment: Revtex, 7pages, 4 ps figure
Metabolic response of early-lactating cows exposed to transport and high altitude grazing conditions
The metabolic response of dairy cows to high as opposed to low altitude conditions (2000 m v. 400 m above sea level) was determined. In the first experiment, four cows were subjected to a series of measurements before, during and after transport from lowland to high altitude pasture. During transport, cortisol, l-lactate and non-esterified fatty acids were significantly elevated but decreased within 1 to 3 days to initial levels. After transport, β-hydroxybutyrate and the thyroid hormones immediately increased and returned within 3 weeks to initial levels. Plasma urea increased during transport and subsequently was at an intermediate level due to the different diet. There were no direct carry-over effects of transport on metabolic traits during pasturing. In the second experiment, three groups of six different dairy cows were either grazed in one of two consecutive years or kept inside (2nd year only). Lowland sojourn lasted for 4 weeks, and high altitude period for 8 weeks. At the end of high altitude sojourn, both outside and inside groups were found still to have significantly higher plasma cortisol values than at lowland. Thyroid hormones and ketosis related metabolites sharply increased at the start of the alpine period and were elevated for 1 to 3 weeks thereafter. According to the hormonal and metabolic profiles, the permanently housed cows did not benefit from the less adverse climatic conditions and the lower physical strain. Plasma urea closely reflected dietary changes in the ratio of nitrogen to fermentable organic matter. Plasma protein, albumin, creatinine, and liver enzyme activities were not affected by transport or high altitude sojourn in both experiments. The results indicate that the metabolic response to transport and high altitude conditions can be mostly explained by the efforts to cover the additional energy requirements. Overall the data suggest a wide but nevertheless limited ability of early-lactating cows to adapt to high altitude condition
The role of soil water monitoring tools and agricultural innovation platforms in improving food security and income of farmers in smallholder irrigation schemes in Tanzania
Smallholder irrigation is an important pathway towards better livelihoods and food security in sub-Saharan Africa. This article assesses the contribution of farmer-friendly soil and water monitoring tools, and agricultural innovation platforms, towards household income
and food security in two small-scale irrigation schemes in Tanzania. Quantitative and qualitative data from farmer’s field books, household surveys and focus groups were used to assess the impacts of the two interventions. The two interventions together contributed to enhancing smallholders’ food security and household income in the
two schemes, as did the agricultural innovation platform on its own
Partial Densities of States, Scattering Matrices, and Green's Functions
The response of an arbitrary scattering problem to quasi-static perturbations
in the scattering potential is naturally expressed in terms of a set of local
partial densities of states and a set of sensitivities each associated with one
element of the scattering matrix. We define the local partial densities of
states and the sensitivities in terms of functional derivatives of the
scattering matrix and discuss their relation to the Green's function. Certain
combinations of the local partial densities of states represent the injectivity
of a scattering channel into the system and the emissivity into a scattering
channel. It is shown that the injectivities and emissivities are simply related
to the absolute square of the scattering wave-function. We discuss also the
connection of the partial densities of states and the sensitivities to
characteristic times. We apply these concepts to a delta-barrier and to the
local Larmor clock.Comment: 13 pages (revtex), 4 figure
Do agricultural innovation platforms and soil moisture and nutrient monitoring tools improve the production and livelihood of smallholder irrigators in Mozambique?
Over four years, a research-for-development project was implemented
at the 25 de Setembro irrigation scheme in Mozambique. The
project introduced agricultural innovation platforms to overcome
barriers to production such as input and output supply chains and
poorly maintained irrigation canals. Soil moisture and nutrient
monitoring tools were provided so that farmers could improve
their irrigation and fertilizer management. The farmers increased
their crop production through the use of the tools and better
irrigation infrastructure, and increased their income and overall
well-being through better links to markets and new information
sources facilitated by the agricultural innovation platforms
Recommended from our members
Cool city mornings by urban heat
The urban heat island effect is a phenomenon observed worldwide, i.e. evening and nocturnal temperatures in cities are usually several degrees higher than in the surrounding countryside. In contrast, cities are sometimes found to be cooler than their rural surroundings in the morning and early afternoon. Here, a general physical explanation for this so-called daytime urban cool island (UCI) effect is presented and validated for the cloud-free days in the BUBBLE campaign in Basel, Switzerland. Simulations with a widely evaluated conceptual atmospheric boundary-layer model coupled to a land-surface model, reveal that the UCI can form due to differences between the early morning mixed-layer depth over the city (deeper) and over the countryside (shallower). The magnitude of the UCI is estimated for various types of urban morphology, categorized by their respective local climate zones
Phase transition close to room temperature in BiFeO3 thin films
BiFeO3 (BFO) multiferroic oxide has a complex phase diagram that can be
mapped by appropriately substrate-induced strain in epitaxial films. By using
Raman spectroscopy, we conclusively show that films of the so-called
supertetragonal T-BFO phase, stabilized under compressive strain, displays a
reversible temperature-induced phase transition at about 100\circ, thus close
to room temperature.Comment: accepted in J. Phys.: Condens. Matter (Fast Track Communication
Wigner Function Description of the A.C.-Transport Through a Two-Dimensional Quantum Point Contact
We have calculated the admittance of a two-dimensional quantum point contact
(QPC) using a novel variant of the Wigner distribution function (WDF)
formalism. In the semiclassical approximation, a Boltzman-like equation is
derived for the partial WDF describing both propagating and nonpropagating
electron modes in an effective potential generated by the adiabatic QPC. We
show that this quantum kinetic approach leads to the well-known stepwise
behavior of the real part of the admittance (the conductance), and of the
imaginary part of the admittance (the emittance), in agreement with the latest
results, which is determined by the number of propagating electron modes. It is
shown, that the emittance is sensitive to the geometry of the QPC, and can be
controlled by the gate voltage. We established that the emittance has
contributions corresponding to both quantum inductance and quantum capacitance.
Stepwise oscillations in the quantum inductance are determined by the harmonic
mean of the velocities for the propagating modes, whereas the quantum
capacitance is a significant mesoscopic manifestation of the non-propagating
(reflecting) modes.Comment: 23 pages (latex), 3 figure
Triple sign reversal of Hall effect in HgBa_{2}CaCu_{2}O_{6} thin films after heavy-ion irradiations
Triple sign reversal in the mixed-state Hall effect has been observed for the
first time in ion-irradiated HgBa_{2}CaCu_{2}O_{6} thin films. The negative dip
at the third sign reversal is more pronounced for higher fields, which is
opposite to the case of the first sign reversal near T_c in most high-T_c
superconductors. These observations can be explained by a recent prediction in
which the third sign reversal is attributed to the energy derivative of the
density of states and to a temperature-dependent function related to the
superconducting energy gap. These contributions prominently appear in cases
where the mean free path is significantly decreased, such as our case of
ion-irradiated thin films.Comment: 4 pages, 3 eps figures, submitted Phys. Rev. Let
- …