607 research outputs found

    The impulsive phase of magnetar giant flares: assessing linear tearing as the trigger mechanism

    Get PDF
    Giant γ\gamma-ray flares comprise the most extreme radiation events observed from magnetars. Developing on (sub)millisecond timescales and generating vast amounts of energy within a fraction of a second, the initial phase of these extraordinary bursts present a significant challenge for candidate trigger mechanisms. Here we assess and critically analyse the linear growth of the relativistic tearing instability in a globally twisted magnetosphere as the trigger mechanism for giant γ\gamma-ray flares. Our main constraints are given by the observed emission timescales, the energy output of the giant flare spike, and inferred dipolar magnetic field strengths. We find that the minimum growth time of the linear mode is comparable to the ee-folding rise time, i.e. 101\sim10^{-1} ms. With this result we constrain basic geometric parameters of the current sheet. We also discuss the validity of the presumption that the ee-folding emission timescale may be equated with the growth time of an MHD instability.Comment: 15 pages, 4 figures, MNRAS in pres

    Larval description and phylogenetic placement of the Australian endemic genus Barretthydrus Lea, 1927 (Coleoptera: Dytiscidae: Hydroporinae: Hydroporini: Sternopriscina)

    Get PDF
    The larvae of the Australian endemic species Barretthydrus tibialis Lea, 1927 and Barretthydrus geminatus Lea, 1927 are described and illustrated for the first time, with detailed morphometric and chaetotaxic analyses of the cephalic capsule, head appendages, legs, last abdominal segment, and urogomphi. A parsimony analysis based on 118 informative larval characteristics of 34 species in all 10 tribes of the subfamily Hydroporinae was conducted using the program TNT. No clear larval morphological synapomorphies support the monophyletic origin of the tribe Hydroporini. Compared to other known larvae of Hydroporini, Barretthydrus Lea is postulated to share a closer phylogenetic relationship with Antiporus Sharp, which reinforces their inclusion in the subtribe Sternopriscina.Fil: Alarie, Yves. Laurentian University. Department of Biology; CanadáFil: Michat, Mariano Cruz. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biología Experimental y Aplicada. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y Biología Experimental y Aplicada; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Biodiversidad y Biología Experimental. Laboratorio de Entomología; ArgentinaFil: Hendrich, L.. Zoologische Staatssammlung Munchen; AlemaniaFil: Watts, Chris H. S.. South Australian Museum; Australi

    Probabilistic estimates of climate change impacts on UK water resources

    Get PDF
    Climate change will increase temperatures and change rainfall across the UK. In turn, this will modify patterns of river flow and groundwater recharge, affecting the availability of water. There have been many studies of the impact of climate change on river flows in the UK, but coverage has been uneven and methods have varied. Consequently, it has been very difficult to compare different locations and hard to identify appropriate adaptation responses

    Defining next-generation additive manufacturing applications for the Ministry of Defence (MoD)

    Get PDF
    “Additive Manufacturing” (AM) is an emerging, highly promising and disruptive technology which is catching the attention of the Defence sector due to the versatility it is offering. Through the combination of design freedom, technology compactness and high deposition rates, technology stakeholders can potentially exploit rapid, delocalized and flexible production. Having the capability to produce highly tailored, fully dense, potentially optimized products, on demand and next to the point of use makes this emerging and immature technology a game changer in the “Defence Support Service” (DS2) sector. Furthermore, if the technology is exploited for the Royal Navy, featured with extended and disrupted supply chains, the benefits are very promising. While most of the AM research and efforts are focusing on the manufacturing/process and design opportunities/topology optimization, this paper aims to provide a creative but educated and validated forecast on what AM can do for the Royal Navy in the future. This paper aims to define the most promising next generation Additive Manufacturing applications for the Royal Navy in the 2025 – 2035 decade. A multidisciplinary methodology has been developed to structure this exploratory applied research study. Moreover, different experts of the UK Defence Value Chain have been involved for primary research and for verification/validation purposes. While major concerns have been raised on process/product qualification and current AM capabilities, the results show that there is a strong confidence on the disruptive potential of AM to be applied in front-end of DS2 systems to support “Complex Engineering Systems” in the future. While this paper provides only next-generation AM applications for RN, substantial conceptual development work has to be carried out to define an AM based system which is able to, firstly satisfy the “spares demands” of a platform and secondly is able to perform in critical environments such as at sea

    I-64 New Albany Emergency Pipe Repair

    Get PDF
    In 2015 a 13-foot diameter corrugated metal pip collapsed under 50+ feet of fill adjacent to I-64 in New Albany, Indiana. INDOT contracted Parsons to design an emergency geotechnical, structural, and environmental solution. Substantial flow through the pipe was reestablished just 5 weeks after the collapse, mitigating the risk of additional flooding or possible damage to the Interstate. Join us to learn about this project, which is an excellent example of teamwork between owner, engineer, permitting agencies, and contractor

    Spatio-temporal influence of tundra snow properties on Ku-band (17.2 GHz) backscatter

    Get PDF
    During the 2010/11 boreal winter, a distributed set of backscatter measurements was collected using a ground-based Ku-band (17.2 GHz) scatterometer system at 26 open tundra sites. A standard snow-sampling procedure was completed after each scan to evaluate local variability in snow layering, depth, density and water equivalent (SWE) within the scatterometer field of view. The shallow depths and large basal depth hoar encountered presented an opportunity to evaluate backscatter under a set of previously untested conditions. Strong Ku-band response was found with increasing snow depth and snow water equivalent (SWE). In particular, co-polarized vertical backscatter increased by 0.82 dB for every 1 cm increase in SWE (R2 = 0.62). While the result indicated strong potential for Ku-band retrieval of shallow snow properties, it did not characterize the influence of sub-scan variability. An enhanced snow-sampling procedure was introduced to generate detailed characterizations of stratigraphy within the scatterometer field of view using near-infrared photography along the length of a 5m trench. Changes in snow properties along the trench were used to discuss variations in the collocated backscatter response. A pair of contrasting observation sites was used to highlight uncertainties in backscatter response related to short length scale spatial variability in the observed tundra environment

    Fusion of Diverse Performance Inertial Sensors for Improved Attitude Estimation Within a Stabilisation Platform for Electro-optic Systems

    Get PDF
    Within line of sight pointing and stabilisation of EO (Electro-optic) systems operating under motion disturbances it is desirable to measure the inertial orientation of different parts of the system, not just the line of sight - this would allow additional information to be added to the control loop. To implement this a framework to fuse the multiple inertial sensors of the EO system is considered, with an example implemented. The fusion of higher performance sensors located at the line of sight is implemented within the proposed framework, to improve the performance of the estimate at the location of the lower performance sensor. The fusion framework makes use of cascaded Multiplicative Extended Kalman Filter that estimate the multiplicative error of the quaternion orientation estimate
    corecore