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ABSTRACT
Giant γ -ray flares comprise the most extreme radiation events observed from magnetars.
Developing on (sub)millisecond time-scales and generating vast amounts of energy within
a fraction of a second, the initial phase of these extraordinary bursts presents a significant
challenge for candidate trigger mechanisms. Here we assess and critically analyse the linear
growth of the relativistic tearing instability in a globally twisted magnetosphere as the trigger
mechanism for giant γ -ray flares. Our main constraints are given by the observed emission
time-scales, the energy output of the giant flare spike, and inferred dipolar magnetic field
strengths. We find that the minimum growth time of the linear mode is comparable to the
e-folding rise time, i.e. ∼10−1 ms. With this result, we constrain basic geometric parameters
of the current sheet. We also discuss the validity of the presumption that the e-folding emission
time-scale may be equated with the growth time of a magnetohydrodynamic instability.

Key words: magnetic reconnection – stars: magnetars – X-rays: bursts.

1 IN T RO D U C T I O N

Magnetars are neutron stars (NSs) whose output power is domi-
nated by the decay of an ultra-strong magnetic field (often exceed-
ing the quantum critical field, Bqed ≡ m2

ec
3/(e�) � 4.41 × 1013 G)

(Thompson & Duncan 1995, e.g. Mereghetti 2008; Turolla, Zane &
Watts 2015). The transient emission properties of such sources in-
clude comparatively minor recurrent soft γ -ray bursts (E � 1042 erg)
and sporadic giant γ -ray flares (E ∼ 1044–1046 erg).1 At present,
three giant flares have been observed from independent sources
and their light curves exhibit remarkably similar characteristics
(see Fig. 2 in Section 2). Giant flares are typically composed of
an explosive initial hard γ -ray spike (kBTspec ∼ 175–250 keV)
that develops within (sub)milliseconds and lasts a mere fraction
of a second (∼0.15–0.5 s), and a quasi-exponentially abating
X-ray tail (∼20–30 keV) that persists for minutes, with superim-
posed pulsations (see e.g. Mazets et al. 1979; Fenimore, Klebesadel
& Laros 1996; Hurley et al. 1999; Feroci et al. 2001; Palmer et al.
2005).

The emission of the decaying tail is argued to be the result of
a continuously evaporating and locally magnetically trapped ther-
mal photon-pair fireball. Beamed emission from this moves in and

� E-mail: cpc.elenbaas@gmail.com
1 Energy discharge estimates assume an isotropic release of radiation.

out the line of sight, due to the rotation of the underlying NS
(Thompson & Duncan 1995). The physical process behind the on-
set, the trigger mechanism, that would clarify the impulsive phase
of these energetic flares, remains however a topic of great debate.
Here we will discuss one such mechanism, spontaneous tearing of
a globally extended equatorial current sheet, in more detail. Typical
emission time-scales of the observed giant flares play a critical role
in resolving this dispute.

1.1 Giant flare trigger mechanisms

In this section, we briefly explore the various magnetar giant
flare trigger mechanisms that have been proposed. We begin
with the setup of the system prior to the explosive event and
proceed with the triggers, subdivided into internal and external
mechanisms.

1.1.1 Setup: magnetic field formation and evolution

The origin of the strong magnetic field is a non-trivial affair.
Thompson & Duncan (1992) have argued that during the tran-
sient phase of extensive neutrino cooling moments after gravita-
tional collapse of the progenitor star, entropy-driven convection
and differential rotation inside a rapidly spinning (initial spin period:
�−1

0 ∼ 1 ms) proto-NS may sustain an efficient α–� dynamo which

C© 2016 The Authors
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could generate an internal magnetic field up to ∼1017 G. Alterna-
tively, the massive progenitor may already accommodate a sizeable
magnetic field. An ultra-strong field is consequently formed via
straightforward flux conservation of the fossil field during implo-
sion (Ferrario & Wickramasinghe 2006).

The dynamical time-scale of the newly formed ultra-strong field
is only seconds or less, and the crystallization of the outer layer
does not set in for another couple of minutes to hours. This allows
the field to evolve readily towards a (meta-)stable magnetohydro-
dynamic (MHD) equilibrium configuration, likely consisting of a
combination of a poloidal and toroidal component, before its fur-
ther evolution is constrained by the presence of a highly conductive
solid crust (Flowers & Ruderman 1977; Braithwaite & Spruit 2006).
The problem of magnetic field stability and the respective strengths
of the two field components have been studied by e.g. Braithwaite
(2009), Lander & Jones (2012), and Ciolfi & Rezzolla (2013). No
consensus has been reached on these matters yet, and further inves-
tigations including the effects of superconductivity (Henriksson &
Wasserman 2013; Lander 2014) and the NS crust (Gourgouliatos
& Cumming 2014) are required to advance the issue. Subsequent
evolution of the strongly twisted field is then determined by am-
bipolar diffusion, Ohmic decay, and (non-diffusive) Hall drift which
occur throughout the interior of the NS (crust and core) and operate
on much longer time-scales �104 yr (Thompson & Duncan 1996;
Heyl & Kulkarni 1998). The conductive crust either severely re-
sists the imparted motion of the frozen-in magnetic flux tubes such
that Maxwell stress builds up continuously in the system or allows
for a constrained transport of magnetic helicity into the magneto-
sphere, which in turn may develop into a sheared configuration. A
reservoir of energy grows (internally or externally) until a certain
critical threshold is reached, suddenly releasing the energy in an
explosive manner through e.g. a crustal failure or MHD instability
of the magnetic field.

1.1.2 Internal trigger

Motivated by the duration of the impulsive phase (∼0.1–1 s),
Thompson & Duncan (1995) initially proposed an internal trig-
ger mechanism whereby a large-scale interchange instability, i.e. a
global MHD rearrangement, would take place in the liquid core of
the NS and propagate outwards on a dynamical time-scale, equal to
the internal Alfvén crossing time,

τ int
A = R∗

vint
A

∼ 0.1 s, (1)

where R∗ ∼ 106 cm is the typical radius of an NS and vint
A ∼

107 B int
15 cm s−1 is the core Alfvén speed for a density ∼1015 g cm−3

with the core magnetic field strength given by B int ≡ B int
15 × 1015 G.

This results in a sudden global displacement of the magnetic foot-
points on the surface of the star injecting an ‘Alfvén pulse’ into the
magnetosphere, which subsequently induces a relativistic outflow
of plasma. The (sub)millisecond rise of the giant flare light curve
is, they argue, the signature of a reconnection front in the magne-
tosphere leading the relativistic outflow, which in turn develops on
the external Alfvén crossing time,

τ ext
A = R∗

vext
A

∼ 3 × 10−2 ms, (2)

where vext
A ∼ c is the magnetospheric Alfvén speed. Therefore, even

though we initially observe the emission from the reconnection

front, the trigger nevertheless is given by the onset of the internal
instability.2

A second trigger mechanism introduced by Thompson & Duncan
(2001) involves the force balance between the rigidity of the elastic
NS crust and vast magnetic shear stress, imparted through the an-
chored magnetic field lines.3 Ultimately, the tension of the strongly
twisted magnetic field in the crust will become the dominant force
and drive the crustal lattice beyond its critical straining threshold
θ crit. As the crust yields, the suppressed magnetic energy is allegedly
liberated abruptly through a propagating fracture – analogous to an
earthquake – producing seismic modes, which in turn couple to
magnetospheric Alfvén modes via the pinned magnetic field lines
(Blaes et al. 1989).

Thompson & Duncan (2001) note however that the storage ca-
pacity of elastic energy in the crust

Emax
elastic ∼ 1.7 × 1043

(
θcrit

10−2

)2

erg, (3)

which depends on its critical yield strain, is insufficient to explain the
observed output power of a giant flare (E � 1044 erg). Accordingly,
they argued that the crust merely functions as a gate that assists in the
storage and discharge of the internal magnetic energy, rather than as
the main energy reservoir. It is important to remark however that they
assumed conservatively θ crit � 10−2, yet this value has since been
revised by Horowitz & Kadau (2009) through molecular dynamics
simulations to be θ crit ∼ 0.1 (this value has been independently
reproduced by Hoffman & Heyl 2012). With this we obtain Emax

elastic ∼
1045 erg (see equation 3), which is comparable to the total energy
output of the giant flares. Note however that the value for the critical
breaking strain decreases significantly, due to defects induced in the
crust after the first time it yields (Hoffman & Heyl 2012). None the
less, Lander et al. (2015) argue that even a moderate breaking strain
of ∼0.065 and a fracture extending to the base of the crust can
power the most energetic giant flare to date.

Due to the large hydrostatic pressure in the NS crust Pcrust in
comparison to the shear modulus μ, i.e. Pcrust � μ, it is impossible
to create a long-lived void necessary for a brittle fracture to occur
(Jones 2003), regardless of the magnitude of the imparted Maxwell
stress. When the crust yields, it does not crack, yet rather undergoes
a gradual plastic deformation in response to the imparted Lorentz
forces, whereby internal currents and associated magnetic helicity
are transported outwards into the less conductive magnetosphere
(Thompson, Lyutikov & Kulkarni 2002).

Levin & Lyutikov (2012) argue that the presence of a strong
magnetic field reinforces the crust, which might strongly impede
the formation of a propagating fracture or global slip, altogether.
Only under certain specific conditions, where the magnetic flux
surface is oriented almost perfectly perpendicular to the direction
of shear (within 10−3 rad), can enough energy be released through
a propagating fracture to explain the observed emission.

An important challenge for trigger mechanisms that manifest
internally, either a core MHD instability or crustal failure, is the
significant impedance mismatch between the internal and exter-
nal Alfvén velocities (Link 2014). As a result, magnetic energy
that dissipates through shear waves cannot be transmitted to the

2 See also the discussion in Link (2014) on the feasibility of such an internal
MHD instability mechanism.

3 This mechanism was discussed earlier by Thompson & Duncan (1995)
in explaining the physical process behind the less energetic recurrent soft
γ -ray bursts from magnetars.
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Figure 1. 2D cut-through of the globally sheared magnetic field containing an equatorial current sheet. Continuous current injections into the magnetosphere
gradually increase the magnetic helicity of the external field. This in turn may evolve continuously towards a Y-type neutral line configuration, such that
a narrow current sheet is formed. Reconnection through spontaneous tearing of the current sheet results in magnetic field dissipation and the ejection of a
relativistic magnetic plasmoid. The dimensions of the current sheet have been labelled (current sheet length Ly and thickness 2δ) and the height of the base of
the reconnection region with respect to the centre of the NS is given by rrec. The velocities vrec and vA are the inward reconnection and outward (Alfvénic)
bulk plasma velocity, respectively.

magnetosphere fast enough to explain the (sub)millisecond rise of
the initial transient phase of the giant flare. Instead, shear waves
get reflected numerous times prior to leaving the stellar interior,
extending the outward transmission time considerably.

1.1.3 External trigger

The aforementioned issues with internal triggers have led to the
notion that prior to a giant flare the magnetic energy might be
stored in the magnetosphere, rather than in the interior of the NS.
Thompson et al. (2002) argue that the tightly wound internal mag-
netic field induces a strong current that in turn closes through a
thin surface layer. This local surface layer will experience a Lorentz
force, which causes the crust to rotate plastically. Anchored mag-
netic field lines are dragged along with the gyrating motion and a
twist is gradually imparted to the external magnetic field. The twist
supporting currents can be composed of charges stripped from the
NS surface or – more likely – of pair creation in the magnetosphere
(Beloborodov & Thompson 2007). Subsequently, the non-potential
external field reacts to the new boundary conditions and evolves
through a series of quasi-equilibria, continuously twisting the ex-
ternal field either locally (Huang & Yu 2014a,b; Beloborodov 2009)
or globally (Thompson et al. 2002).

A local increase of helicity leads to the formation of a heli-
cally twisted flux rope embedded in the magnetar magnetosphere,
whereby the impulsive phase of the giant flare is associated with
an abrupt loss of equilibrium and subsequent catastrophic desta-
bilization of the flux rope, analogous to the dynamics of coronal
mass ejections (Masada et al. 2010; Yu 2012, 2013; Huang & Yu
2014a,b). Alternatively, a global accumulation of twist may cause
the external field to eventually expand outwards, becoming increas-
ingly radial, and admitting a cusp-shaped or Y-type neutral line
topology, characterized by a narrow equatorial current sheet where
the magnetic shear is most significant (Mikić & Linker 1994; Wolf-
son 1995; Parfrey, Beloborodov & Hui 2013). In this narrow yet
extended neutral layer, the gradients become significant and the
MHD approximation breaks down allowing for the field lines to
diffuse through the plasma. The onset of the flare is then given
by an explosive reconnection event, which may roughly develop

on the external Alfvén crossing time τ ext
A ∼ 10−2 ms (equation 2)

(Thompson & Duncan 1995), and the expulsion of a relativistic
plasmoid. In this paper, we investigate specifically the reconnection
process in the latter configuration – illustrated in Fig. 1.

Both magnetospheric models provide a mechanism for slow
build-up of an energy reservoir over tens of years caused by the
ambipolar diffusion of the internal magnetic field and its subsequent
rapid conversion into bulk kinetic energy, particle acceleration, and
radiation (� milliseconds). Observed spectral hardening (softening)
and an increase (decrease) in spin-down in the pre (post) giant flare
stage of SGR 1900+14 and SGR 1806−22 (Woods et al. 1999,
2001; Mereghetti et al. 2005; Rea et al. 2005) are consistent with an
increase (decrease) of twist and charge density in the external field
(Thompson et al. 2002; Lyutikov 2006). Moreover, a considerable
reduction in harmonic content of the pulse profile of SGR 1900+14
during and following the giant flare suggests a burst mechanism
which reduced the twist of the external field significantly (Woods
et al. 2001).

Distinct reconnection models have been introduced to describe
the initial transient phase of the observed giant flares. Lyutikov
(2003, 2006) and Komissarov, Barkov & Lyutikov (2007) suggest
the development of the tearing instability in a relativistic force-
free current sheet as the trigger mechanism. They argue that the
minimum growth time of the linear tearing mode accords with the
(sub)millisecond rise (to peak) of the giant flares. Alternatively,
Gill & Heyl (2010) propose a fast reconnection model that relies
on collisionless Hall reconnection (τHall

rec ∼ 0.3 ms) and ascribes a
crucial role to the soft precursors (�1041 erg, kBT < 50 keV) that
have been observed before the last two giant flares.4 These precur-
sors facilitate the conditions for collisionless Hall reconnection by
introducing a baryon contaminant in the pair-dominated magneto-
sphere, since the former process relies on the Hall effect which in
turn requires a non-mass-symmetric plasma composition to operate.

4 Any precursor of the 1979 March 5 giant flare would have gone by
unnoticed due to the lack of detectors operational at the time with sensitivities
below ∼50 keV.
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Table 1. Observed emission time-scales from magnetar giant flares. Including auxiliary parameters: source distance d, isotropic peak luminosity Lpeak,
spike energy Espike, spectral temperature kBTspec, and inferred surface dipole magnetic field strength Bs.

SGR 0526−66 1900+14 1806−20

Date 1979 March 5 1998 August 27 2004 December 27
Ref. Ref. Ref.

τ e (ms) �1 [4] <1.6, <4 [14], [6] � 0.3, < 1 [13], [7]
τ peak (ms) ∼15, ∼20 [8], [2] – ∼1.5 [13]
τ spike (s) ∼0.1–0.2 [9] ∼0.35, ∼1.0 [10], [6] ∼0.2, ∼0.5 [7], [13]

d (kpc) 53.6 [5]c 12.5 [3]c 8.7 [1]c

Lpeak
a (1044 erg s−1) ∼4.7, ∼ 18b [8], [4] >0.64, > 5.6, > 160 [6], [10], [14] ∼7 × 102 [7]

Espike
a (1044 erg) ∼1.1 [8] >0.10, > 3.0 [10], [14] ∼1.2 × 102 [7]

kBTspec (keV) 246 [4] 240 [6] 175 [7]

Bs (1014 G) 5.6 [15]c 7.0 [11]c 20 [12]c

aReference peak luminosities and spike energies have been adjusted according to respective source distances in [1], [3], and [5].
bPeak luminosity from [8] ([4]) is an average over 200 (10) ms. References: [1] Bibby et al. (2008); [2] Cline et al. (1980); [3] Davies et al. (2009);
[4] Fenimore et al. (1996); [5] Haschke, Grebel & Duffau (2012); [6] Hurley et al. (1999); [7] Hurley et al. (2005); [8] Mazets et al. (1979); [9] Mazets
& Golenetskii (1981); [10] Mazets et al. (1999); [11] Mereghetti et al. (2006); [12] Nakagawa et al. (2009); [13] Palmer et al. (2005); [14] Tanaka et al.
(2007); [15] Tiengo et al. (2009).
cReferences obtained through the ‘McGill Online Magnetar Catalog’ (Olausen & Kaspi 2014): http://www.physics.mcgill.ca/∼pulsar/magnetar/main.
html. Burst references can also be found at the Amsterdam Magnetar Burst Catalogue: http://staff.fnwi.uva.nl/a.l.watts/magnetar/mb.html.

In this paper, we focus on magnetospheric giant flare trigger
mechanisms. In particular, we critically analyse the most discussed
candidate reconnection mechanism, i.e. impulsive reconnection
through the spontaneous development of the tearing instability in a
globally sheared external field.5 We revise the tearing mode growth
time as applied to magnetar magnetospheres by Lyutikov (2003)
and expand on the rectified result. Characteristic time-scales appear-
ing in the giant flare light curves have hereby provided necessary
constraints. Furthermore, we provide order-of-magnitude estimates
related to the geometry of the reconnection region and discuss the
validity of basic assumptions regarding this trigger mechanism.

In Section 2, we review typical time-scales of the observed gi-
ant flare emission and additional relevant data of the phenomena
involved. In Section 3, we summarize previous works on the dy-
namics behind the relativistic tearing instability and the general
expression for its minimum growth time. Subsequently, we show
that a revised version of the tearing mode growth time for magne-
tar magnetospheres can in principle explain the (sub)millisecond
rise times of giant flares under certain conditions, pertaining to the
geometry of the reconnection region. In Section 4, using straight-
forward theoretical models that rely on the tearing mode time-scale,
we constrain the height of the reconnection region and thickness of
the current sheet in which the tearing mode develops. In Section 5,
we discuss the relations between the MHD growth time and the
radiative time-scale, which is directly connected with the observed

5 Recent particle-in-cell (PIC) simulations that describe relativistic recon-
nection in pair plasmas demonstrate the growth of the drift-kink (DK) insta-
bility perpendicular to the plane of reconnection through tearing (Zenitani
& Hoshino 2007). For certain initial equilibrium configurations, the DK
instability dominates over the tearing instability at first and consequently
impedes efficient reconnection, thermalizes the particles, and broadens the
current sheet. However, it is also shown that efficient reconnection leading
to significant particle acceleration will occur at a later stage, when the tear-
ing mode regains dominance (Sironi & Spitkovsky 2014). Moreover, it is
found that the DK instability is quenched in the presence of a finite guide
field, such that the dynamics of the sheet is dictated by the development
of the tearing instability at all stages (Zenitani & Hoshino 2008; Kagan,
Milosavljevic & Spitkovsky 2013; Cerutti et al. 2014). The Bφ component
of the globally twisted magnetic field surrounding the NS may act as a guide
field in the case of an equatorial current sheet.

light curve. Throughout the paper, we adopt a Gaussian-cgs unit
system in our calculations.

2 EMI SSI ON TI ME-SCALES

Currently, three magnetars have produced a giant γ -ray flare.
In chronological order, they are the 1979 March 5 flare from
SGR 0526−66 (Mazets et al. 1979), the 1998 August 27 flare
from SGR 1900+14 (Hurley et al. 1999), and the 2004 Decem-
ber 27 flare from SGR 1806−20 (Palmer et al. 2005). The energy
in radiation emitted during the decaying tail was roughly equal for
the three giant flares (Etail ∼ 1044 erg), indicating that the strength
of the confining magnetospheric field, which traps the photon-pair
fireball, is roughly similar for the three sources since the energy
storage capacity of the field is related to its strength (Mereghetti
2008). The inferred surface dipole magnetic field strengths Bs of
the sources are given in Table 1. The released photon energy during
the initial spike was however considerably larger for the most recent
giant flare (Espike ∼ 1046 erg), as compared to the first two (Espike ∼
1044 erg).

Considering the fact that the duration of the hard spike is roughly
three orders of magnitude less than the soft tail, it is rather astonish-
ing that the photon energy output of the hard spike is approximately
equal to or even much greater than the energy released during the
decay of the soft tail. The conversion of such a vast amount of stored
magnetic energy into high-energy radiation in a considerably lim-
ited window of time requires an extraordinary trigger mechanism
indeed, which accordingly may be constrained by the observed
photon flux and associated sub(milli)second rise time.

2.1 Time-scale definitions

In studying the initial spectrally hard phase of the giant flare light
curve, the following characteristic emission time-scales may be
defined6 (see Fig. 2). The e-folding rise time τ e describes the expo-
nential rise of the spike out from the continuum ([fγ ∝ exp (t/τ e)],

6 Here we follow the definitions for the typical time-scales as described by
Duncan (2004, section 1.3).
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Figure 2. Schematic representation of giant γ -ray flare light curve with
the γ -ray photon flux as a function of time. Typically, the giant flare light
curve may be subdivided into two regions characterized by their respective
spectral hardness: the spectrally hard impulsive phase, i.e. the hard spike,
and the spectrally soft afterglow or tail with superimposed pulsations. The
onset of the giant flare is at t0, the hard spike reaches its peak flux at
tpeak, and t∗ denotes the end of the spectrally hard phase. The grey area
denotes the exponential rise time-scale of the spike, fγ ∝ exp (t/τ e). The
peak time is defined as τ peak ≡ |tpeak − t0| and the spike duration time as
τspike ≡ |t∗ − t0|. Note that, since in reality τ spike 	 τ tail, the time domain of
the initial phase has been magnified for viewing purposes. The most distinct
mode of the modulated tail emission has a period equal to the rotation period
2π�−1∗ of the NS.

where fγ represents the photon flux). This emission time-scale con-
strains the explosive capability of the trigger mechanism, i.e. the
physical process that generates the observed radiation is necessarily
required to advance on this time-scale. The peak time τ peak ≡ |tpeak

− t0| denotes the time between the onset of the spike t0 and the
moment tpeak when the spike photon flux peaks [f max

γ (tpeak)] and
the spike time τspike ≡ |t∗ − t0| represents the duration of the spike,
i.e. the timespan of the spectrally hard phase of the giant flare light
curve, where t∗ indicates the end time of the hard spike. The latter
time-scale may serve to constrain the energy deposition or radiative
evaporation time. This time-scale will depend on factors such as
the extent of the energy reservoir, the rate of energy conversion and
radiation production, and/or the effective trapping of the generated
radiation.

2.2 Observed characteristic time-scales
and auxiliary parameters

From the giant flare initial spike data listed in Table 1, we find that
the values for the various time-scales are typically, τ e ∼ 0.1–1 ms,
τ peak ∼ 1–10 ms, and τ spike ∼ 0.1–1 s. However, the accuracy and
precision of the e-folding rise time measurements are restricted by
the limited time resolution of the detectors operational at the time.
Moreover, the short time-scales may have been significantly affected
by saturation of the detector and deadtime of the instrument. Both
effects, if present, result in an overestimation of the shortest time-
scales and in particular the e-folding rise times. Therefore, strictly
one should regard these time-scales as upper limits.

The listed spectral temperatures kBTspec in Table 1 are obtained
through fitting optically thin thermal bremsstrahlung or cooling
blackbody models to the spectra of the observed giant flare spikes
(Fenimore et al. 1996; Hurley et al. 1999, 2005). However, the exact

physical mechanism that generates the observed spectra remains
unknown.

The initial spikes display strong variability on (sub)millisecond
time-scales and quasi-periodic oscillations (QPOs) with ν ∼ 102 Hz
(Barat et al. 1983; Hurley et al. 1999; Feroci et al. 2001; Schwartz
et al. 2005; Terasawa et al. 2005). Peak luminosities and spike
energies in Table 1 are found assuming isotropic radiation and
computed from the observed fluxes using the respective source
distances; no spectral bolometric corrections have been applied. In
Table 1, multiple values are quoted at times for various quantities.
These values have been sourced from distinct references. They differ
because of significant differences in instrumentation, e.g. energy
bandwidth and time resolution, and in data analysis techniques. We
quote these values to give an indication of the uncertainties involved.

3 T H E R E L AT I V I S T I C T E A R I N G M O D E

Here we consider the development of the tearing instability in a
relativistic current sheet as depicted in Fig. 1. In the presence of
finite magnetic resistivity η, the current sheet will become unstable
to transverse tearing modes (k · B = 0) and decompose into many
smaller current filaments or magnetic islands (Furth, Killeen &
Rosenbluth 1963) – see Fig. 1. Simultaneously, magnetic energy is
converted into heat, bulk kinetic energy, and charged particles are
accelerated by the reconnection-induced electric field E = −Ez ẑ
(see e.g. Priest & Forbes 2000).

In the following, we revisit and further analyse the (relativistic)
tearing instability as a candidate trigger mechanism for the onset of
magnetar giant flares, the groundwork for which has been laid in
detail by Lyutikov (2003) and Komissarov et al. (2007). Here we
briefly review the relevant equations of resistive magnetodynamics
(MD) and the stability analysis of a current sheet in a magnetically
dominated magnetosphere, which ultimately results in a minimum
growth time of the linear tearing mode. Next we discuss the appli-
cation of this characteristic time-scale to the initial rise of magnetar
giant flares and reassess the conclusions of previous work.

3.1 Force-free degenerate electrodynamics

3.1.1 Magnetization parameter

To investigate the properties of the magnetar magnetosphere, it
proves useful to define the dimensionless magnetization parameter,

σm ≡ 2
uB

up
= B2

4πρc2
, (4)

which describes the ratio of magnetic energy density to total particle
energy density, where uB = B2/8π and up = ρc2, with B the magni-
tude of the magnetic field, ρ the particle density, and c the speed of
light. The magnetization parameter for magnetar magnetospheres is
estimated to be 1013 ≤ σ m ≤ 1016 (Komissarov et al. 2007). When
σ m � 1, the magnetosphere is said to be magnetically dominated
(the inertia of the particles is negligible, even though they still act as
carriers of charge) and relativistic, since the velocity of an Alfvén
wave,

vA = c

(
σm

1 + σm

)1/2

, (5)

approaches the speed of light, i.e. vA → c. Note accordingly that
the Alfvén transit time becomes the light crossing time, τA → τ c =
l/c, where l denotes the typical length-scale of the system.
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In describing the dynamics of the magnetar magnetosphere, σ−1
m

may be used as a small expansion parameter to approximate the
general equations of relativistic MHD in the limit of vanishing rest-
mass density and pressure of matter (force-free approximation),
i.e. force-free degenerate electrodynamics (FFDE) or MD (Uchida
1997; Komissarov 2002; Komissarov et al. 2007).

3.1.2 Ohm’s law in resistive FFDE

In FFDE the energy–momentum equation in covariant form,
stripped from its matter component, reduces to

∇μT μν
em = 0, (6)

where

T μν
em = 1

4π

[
FναFμ

α − 1

4
gμν

(
Fαβ

F αβ
)]

(7)

denotes the electromagnetic stress-energy tensor, composed of the
electromagnetic field tensor Fμν and the metric tensor gμν . We do
not consider the effects of gravitational curvature and assume a
Minkowski metric gμν → ημν with signature s = −2. Combining
the energy–momentum equation (equation 6) with the covariant ho-
mogeneous and inhomogeneous Maxwell’s equations, respectively

∂μ(�F )νμ = 0, (8)

and

∂μFμν = 4π

c
J ν, (9)

where (�F)μν = (1/2)εμνσλFσλ represents the Hodge dual of Fμν and
Jμ = (cρch, j )T is the four-current,7 we may write the divergence
of the stress-energy tensor as

∂νT
μν

em − 1

c
FμνJν = 0, (10)

and subsequently find

FμνJν = 0. (11)

The above expression is the so-called force-free condition and im-
plies specifically that the Lorentz force,

f μ = 1

c
FμνJν, (12)

is required to vanish, i.e. that the force-free electromagnetic field is
fundamentally degenerate (Komissarov 2002). It follows immedi-
ately that the first electromagnetic invariant is zero,

Fμν(�F )μν = 0, (13)

which is known as the degeneracy condition. This means that the
inertia of the plasma particles, but not their electromagnetic inter-
action, is ignored.

In ideal FFDE, we wish to describe the plasma velocity in a
physical force-free electromagnetic field. To this end, we require the
plasma velocity field given by Uμ = γ (c, v)T to satisfy FμνUν =
0. Since the four-velocity of the plasma is a time-like vector, we
demand that the second electromagnetic invariant be positive,

FμνF
μν > 0, (14)

which necessitates the existence of time-like zero eigenvectors
of Fμν . This condition implies that there exists a reference

7 Here ρch represents the plasma charge density.

frame wherein observers at rest detect a field that is purely
magnetic, i.e. where the electric field vanishes entirely (Uchida
1997).

Adopting 3+1 notation, we find that equations (11), (13) and (14)
become respectively

ρch E + 1

c
j × B = 0, (15)

E · B = 0, (16)

B2 − E2 > 0, (17)

where E denotes the magnitude of the electric field and B the mag-
nitude of the magnetic field. Incidentally, F 0iJi = E · j = 0 and
the electromagnetic energy is conserved, i.e.

∂t (E · B) = 0. (18)

To obtain Ohm’s law, which describes the relation between the
current and the electric field, it is convenient to separate the current
vector into components parallel and perpendicular to the magnetic
field vector,

j = j⊥ + j‖, j⊥ = (B × j ) × B
B2

, j‖ = (B · j ) B
B2

.

(19)

With the force-free condition (equation 15), we may express the
perpendicular component as

j⊥ = ρchv⊥, (20)

where along with the requirement expressed by equation (17) we
have defined the electric drift velocity

v⊥ ≡ c
E × B

B2
, (21)

which denotes the plasma velocity component across the magnetic
field.

In the singular current sheet however, the ideal MHD approxima-
tion breaks down and the magnetic resistivity becomes finite, i.e.
the second electromagnetic invariant (equation 17) becomes nega-
tive. Accordingly, the parallel component of Ohm’s law is altered to
include the effect of current dissipation, solely along the magnetic
field, due to the presence of a resistive electric field. To this end,
we introduce the relativistic formulation of Ohm’s law in covariant
form (Gedalin 1996),

FμνUν = 4π

c
�μν(δα

ν − UνU
α)Jα, (22)

where �μν represents the resistivity tensor. This tensor is highly
anisotropic in FFDE, since only the currents flowing along the field
may experience resistive dissipation. Accordingly, we define the
resistivity tensor as such

�μν ≡ η
bμbν

b2
, (23)

where bμ = (�F)μνUν represents the magnetic four-vector and the
scalar resistivity or magnetic diffusivity, which characterizes the dis-
sipation of currents, is given by the phenomenological parameter8

η = c2/(4πσ ), with σ the macroscopic conductivity of the plasma.

8 We do not derive η from microscopic plasma processes, but rather assume
a simple macroscopic description.
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Subsequently, by convolving equation (22) with the magnetic four-
vector, we obtain (Lyutikov 2003)

FμνUν(�F )μαU
α = 4π

c
η(�F )μαUαJμ, (24)

which in 3+1 notation becomes

γ 2(B · E)(c2 − v · v) = 4π

c
ηγ

[
j · (c B − v × E) − J 0(B · v)

]
,

(25)

where γ = [1 − (v · v/c2)]−1/2 is the Lorentz factor. The above
expression reduces to

c2

4πη
(B · E) = γ

c

[
j · (c B − v × E) − J 0(B · v)

]
. (26)

Upon splitting vectors into components parallel and perpendicular
to the magnetic field, we can rewrite equation (26) as

c2

4πη
(B · E) = γ

[
(B · j )

(
1 − E2

⊥
B2

)

−ρch(B · v)

(
1 − E2

⊥
B2

) ]
. (27)

We remove the second term on the r.h.s. by choosing our coordinate
system such that v‖ ≡ 0. Consequently with equation (21) we have
that

γ −2 =
(

1 − E2
⊥

B2

)
, (28)

such that equation (27) becomes

(B · j ) = c

4π

[
cγ

η
(B · E)

]
. (29)

Accordingly, we use the above result to rewrite the parallel com-
ponent of the current vector and ultimately obtain the following
expression for the current vector,

j = c

4π

[
4πρch

v⊥
c

+ cγ

η

(B · E)B
B2

]
, (30)

which describes Ohm’s law in resistive FFDE, whereby the electric
current is written solely in terms of the electric field components,
parallel and perpendicular to the magnetic field. Note that in the
plasma rest frame v⊥ = 0, the electromagnetic field is no longer
purely magnetic, due to the presence of the resistive electric field.

3.2 MD near force-free equilibrium

The divergence of the stress-energy tensor (equation 10) determines
the energy- and momentum-conservation equations, given in 3+1
notation as follows:

∂t uem + ∇ · S + E · j = 0, (31)

∂t pem − ∇ · T ij
em + 1

c
j × B + ρch E = 0, (32)

where respectively

uem = B2 + E2

8π
and pem = S

c2
, (33)

are the electromagnetic energy density and electromagnetic mo-
mentum density. The above expressions are written in terms of the
Poynting vector,

S = c

4π
E × B, (34)

and the Maxwell stress-tensor

T ij
em = 1

4π

[
EiEj + BiBj − 1

2
(E2 + B2)δij

]
, (35)

where δij is the Euclidean metric of flat space.
To study the dynamical properties of a system near force-free

equilibrium, we introduce the relevant time-scales via the relativistic
Lundquist number,

Sl ≡ τη

τA
= lc

η
, (36)

where τ η ≡ l2/η is the resistive diffusion time-scale, τA ≡ l/vA →
l/c denotes the hydromagnetic time-scale or Alfvén transit time (for
σ m � 1), and l denotes the corresponding typical length-scale of
the system.

The evolution of the system can be represented by the time-
scale τ , for which τA 	 τ 	 τ η. Accordingly, |v⊥| 	 c and with
equation (21) we find naturally E⊥ 	 B. Immediately, we may
approximate

γ → 1,

uem � uB = B2

8π
,

T ij
em � 1

4π

(
BiBj − B2

2
δij

)
.

Scaling equations (31) and (32) in terms of the small expansion
parameters (τ/τ η) and (τA/τ ) and assuming incompressibility of
the plasma, Komissarov et al. (2007) derive the following closed
set of equations,

∇ · v⊥ = 0, (37)

∇ · B = 0, (38)

∂t B = ∇ × (v⊥ × B) + η∇2 B, (39)

ρem[∂t (∇ × v⊥)] = 1

8π
∇ × (B · ∇)B, (40)

that together govern the dynamics of a system near force-free equi-
librium and incidentally closely resemble the equations of non-
relativistic resistive incompressible MHD.

3.3 Growth time of the (relativistic) tearing mode

3.3.1 Linear stability analysis

The growth time of the tearing instability may be obtained by per-
forming linear stability analysis on a current sheet described by
the following one-dimensional force-free equilibrium profile that
represents a rotational discontinuity (Low 1973),

B0 = B0 tanh
( x

δ

)
ŷ ± B0 sech

( x

δ

)
ẑ, (41)

where the magnetic null line is given by the sheared B0y component
that goes to zero at x = 0, whilst the magnitude of the magnetic
field vector |B0(x)| remains constant under rotation over π rad
(see Fig. 3). The vector rotates predominantly within the domain
−δ < x < δ, such that the typical length-scale of the system is given
by l → δ, which denotes the (half-)thickness of the current sheet.9

9 In the following, we refer to δ simply as the thickness of the current sheet,
even though in principle it only describes half of the total thickness – see
Fig. 1.
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Figure 3. 3D schematic representation of the force-free equilibrium profile
in the form of a rotational discontinuity. The magnitude of the magnetic field
vector remains constant under rotation over π rad and most of the rotation
takes place within −δ < x < δ. Accordingly, the typical length-scale of the
system, i.e. the current sheet (half-)thickness, is given by δ. A magnetic null
line, which denotes the location of the resistive sublayer, is formed in the
xy-plane at x = 0.

Through linearizing the dynamical equations of resistive MD,10

Komissarov et al. (2007) demonstrate how to derive the following
expressions for the (maximum) wavelength and (minimum) growth
time of the fastest growing linear mode,

λmax = 2π δS1/4
δ , τmin

tm = τAS1/2
δ = (

τAτη

)1/2
, (42)

where Sδ = cδ/η is the relativistic Lundquist number correspond-
ing to the length-scale δ and the minimum growth time of the tearing
mode is ascertained to be the geometric mean of the Alfvén- and
resistive diffusion time-scale, as in the case of non-relativistic re-
sistive incompressible MHD. Further comprehensive and general
derivations of tearing mode characteristics may be found in the lit-
erature, e.g. White (1986), Goldston & Rutherford (1995), Priest &
Forbes (2000), Lyutikov (2003), and Goedbloed, Keppens & Poedts
(2009).

3.4 Tearing mode growth time in magnetar magnetospheres

Here we aim to establish the minimum growth time of the tearing
mode prevailing in magnetar magnetospheres. In a globally twisted
magnetic field, the radial dependence of the magnetic field strength
is approximately given by (Thompson et al. 2002)

B0(r) � Bs

(
r

R∗

)−(2+p)

, (43)

where Bs denotes the inferred surface dipole magnetic field strength
and R∗ ∼ 106 cm is the typical NS radius. Also, 0 < p < 1 is the
radial index which parametrizes the net twist angle 0 < �φ < π,
where the limiting value p = 1 (p = 0) corresponds to a net twist
of �φ = 0 (�φ = π), representing a pure dipole (split monopole)
configuration. B0(r) will function as the background or upstream
magnetic field strength of the reconnection region.

We need a qualitative estimate of the local magnetic resistivity
η. We consider a macroscopic description, whereby the resistivity
is homogeneous and given by the presence of Langmuir turbulence

10 The linearized equations of resistive MD are equal to those of resistive
MHD, such that the growth time of the linear tearing mode remains equal
for both regimes. This similarity was first made explicit by Komissarov et al.
(2007).

(as in Lyutikov 2003). In this case, the typical turbulent length-scale
is given by the electron skin depth,

δe = c

ωp,e
, (44)

where ωp,e = (4πn±e2/me)1/2 is the electron plasma frequency,
with n± = n+ + n− the total number density of the charge carriers,
i.e. the sum of positrons n+ and electrons n−, e is the elementary
charge unit, and me the electron mass. Accordingly, the resultant re-
sistivity of a turbulent plasma with a typical eddy size and turnover
velocity of δe and c, respectively, is approximately

η ∼ c δe = c2

ωp,e
= c2

(
4πn±e2

me

)−1/2

. (45)

In the aforementioned globally twisted dipole model, the magneto-
spheric currents generate a toroidal field component that approaches
the strength of the poloidal field, i.e. Bt � Bp ∼ B0(r). Therefore,
we may apply Ampère’s law to obtain an estimate for the charge
number density as a function of the local magnetic field strength
B0(r) and distance from the NS centre r (Lyutikov 2002),

∇ × B0 = 4π

c
j = 4πe [β+n+ − β−n−], (46)

where β+ and β− are the dimensionless drift velocities of the
positrons and electrons, respectively. If we consider the case where
β+ = −β− ∼ 1 and n+ � n−, we may simplify11

n± ∼ B0(r)

8πe r
. (47)

Accordingly, we obtain an expression for the plasma frequency,

ωp,e ∼
(ωc,e c

r

)1/2
, (48)

with the electron cyclotron frequency given by ωc, e ≡ eB0(r)/(mec).
The resistivity as a function of the surface dipole magnetic field
strength and distance to the centre of the NS becomes

η � c2

[
eBs

mer

(
r

R∗

)−(2+p)
]−1/2

. (49)

Now together with equations (36) and (42), we may ultimately
obtain the minimum growth time of the tearing mode in magnetar
magnetospheres,

τmin
tm =

(
δ3

cη

)1/2

�
(

eR(2+p)
∗

mec6

)1/4

δ3/2r−(3+p)/4B1/4
s . (50)

In order to compare this result with the observed time-scales, we
rewrite the above result in terms of typical values for the relevant
parameters,

τmin
tm � 10−1 δ

3/2
4 r

−(3+p)/4
7 B

1/4
s,15 ms, (51)

where we define δ4 ≡ δ/(104 cm), r7 ≡ r/(107 cm), Bs, 15 ≡
Bs/(1015 G), and 0 < p < 1 (in practice, p will always be close to
unity). With these scalings, the minimum growth time of the tearing
mode agrees nicely with the observed (sub)millisecond e-folding
rise times τ e of the magnetar giant flares.

11 Twisted magnetospheres are believed to be threaded by pairs moving at
mildly relativistic speeds and with low multiplicity, as required to explain
magnetar quiescent emission at X-ray energies (see e.g. Turolla et al. 2015,
and references therein).
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Note that this time-scale differs significantly from the minimum
growth time as calculated by Lyutikov (2003), essentially due to an
error in that calculation (specifically in the inferred expression for
the plasma frequency). In addition, we have adopted a rather smaller
(by a factor of 10−2) typical size for the thickness of the current
sheet δ than the value used in Lyutikov (2003). We do this since for
large gradients to develop, the thickness of the current sheet must be
significantly less than the global extent of the reconnection region,
which in the case of magnetar giant flares is a few times the NS
radius. Komissarov et al. (2007) argue for a current sheet thickness
of ∼3 × 103 cm; however, we have not been able to reproduce their
inferred tearing mode time-scale [particularly equation (73) in their
paper]. Without the above modification to the typical value for δ,
however, the inferred tearing mode growth time would be ∼100 ms
(Duncan 2004). If this were the case, it would entirely rule out
the development of the tearing mode as a candidate mechanism to
explain the (sub)millisecond rise times of the magnetar giant flares.

In the subsequent section, we will assume that the trigger is given
by the development of a tearing instability, and that its minimum
growth time corresponds to the time-scale on which the observed
emission is released from the system, i.e. τmin

tm = τe. We explore ad-
ditional constraints on the geometry of the reconnection region that
are required for the linear tearing mode to be a plausible mechanism
for the giant flares, and discuss how they relate to the constraints
derived in this section.

4 PH Y S I C A L C O N S T R A I N T S
O N T H E R E C O N N E C T I O N R E G I O N

Here we present two straightforward models, respectively based
on energy conservation and mechanical equilibrium of the current
sheet, that provide order-of-magnitude estimates for the thickness
of the current sheet δ and height of the base of the reconnection
region in terms of the radial distance from the NS centre r.

In order to relate the thickness of the tearing unstable current sheet
to the global length of the reconnection region Ly, we consider the
following elementary instability condition: for an unstable mode
to be able to develop in a current sheet, its growth time (τmin

tm ) is
required to be less than the time it would take for the perturbation
to exit the system (Ly/c; Shibata & Tanuma 2001). We obtain the
requirement

τmin
tm <

Ly

c
. (52)

Together with equation (50) we have the following upper limit to
the thickness of the current sheet

δmax = S−1/2
δ Ly, (53)

and equivalently

δmax = [ c η (τmin
tm )2 ]1/3. (54)

4.1 Conversion of magnetic energy

Fig. 4 shows the geometry of the reconnection region in the xy-plane,
whereby the curved (blue) arrows represent the sheared magnetic
field that continues to annihilate within the current sheet, which in
turn is denoted by the smaller rectangular box (2δ × Ly). The larger
rectangle (2Lx × Ly) describes the size of the total area that pro-
ceeds to reconnect, i.e. the extent of magnetic flux that is advected
into the current sheet for the duration of the hard γ -ray spike τ spike.

Figure 4. 2D schematic representation of the reconnection region – the
reconnection geometry is uniform along the z-direction. The curved (blue)
arrows denote the sheared magnetic field component, the thick (grey) arrows
represent the plasma inflows and outflows, the large box describes the extent
of the reconnection region for the duration of the hard γ -ray spike, and the
smaller rectangular box denotes the current sheet. The volume of the entire
reconnection region is given by V = (2Lx)LyLz, where Lx = vrecτ spike =
(δ/τ rec)τ spike, representing the extent to which the magnetic field is fed
into the diffusion region for the duration of the spike, assuming that vrec

remains constant, and Lz < 2πr for an equatorial current sheet. This image
essentially represents a magnification of the reconnection region depicted
in Fig. 1.

We hypothesize that the magnetic field lines are fed into the diffu-
sion region at a constant rate (this assumption is discussed further
in Section 5.2.2). The reconnection rate is generally determined
by the aspect ratio of the reconnection region through mass flux
conservation (e.g. Pucci & Velli 2013), i.e.

vrec

c
� δ

Ly

= S−1/2
δ , (55)

which together with equation (52) leads to

vrec � δ

τrec
. (56)

Accordingly, we find that

Lx ∼ vrecτspike = δ

(
τspike

τrec

)
. (57)

For an equatorial current sheet, we have Lz < 2πr (one may picture
the current sheet as a disc around the NS if Lz = 2πr). The entire
volume of magnetic flux that reconnects over the course of the initial
hard phase of the giant flare is then given by V = (2Lx)LyLz. The
energy contained in this region, that is subsequently released within
τ spike, can be estimated as

Etot � ζ uBV = ζ
B2

0

8π

(
2LxLyLz

) = ζ B2
0 rLyδ

2

(
τspike

τrec

)
, (58)

where ζ is the fraction of free magnetic energy that is dissipated and
we have used uB = B2

0 /(8π) for the local magnetic energy density
in terms of the upstream magnetic field B0. Rewriting this equation,
we obtain

δ(r) ∼ 2 Etot

ζ B2
0 rLy

(
τrec

τspike

)
. (59)

Note incidentally that the above general expression does not rely
on any particular reconnection mechanism as yet. If we now con-
sider linear tearing as the principal reconnection mechanism, we
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may set τrec = τmin
tm and, through equation (52), Ly = cτmin

tm . Using
equation (43) and adopting p = 1/2, we end up with

δ(r) ∼ 2 Etotr
4

ζ cB2
s R

5∗τspike
. (60)

Together with the condition stated in equation (54), we find an
estimate for the height of the reconnection region

rrec ∼ 107

[
ζ B

11/6
s,15 (τmin

tm,−4)2/3

(
τspike,0.2

Etot,45

)]12/41

cm, (61)

and the thickness of the current sheet at rrec,

δ(rrec) ∼ 104

[
ζ 7 B6

s,15(τmin
tm,−4)32

(
τspike,0.2

Etot,45

)7
]1/41

cm. (62)

In the above, we have made use of equations (49) and (52) to
eliminate η(r) and Ly, respectively. The solutions depend mildly
on ζ .

4.2 Mechanical equilibrium

Without mechanical equilibrium across the current sheet boundary,
the current sheet would disrupt before reconnection could occur
effectively (Uzdensky 2011). This requirement is given by the fol-
lowing pressure balance,

Pcs + B2
cs

8π
= P0 + B2

0

8π
, (63)

where Pcs and Bcs, respectively, are the leptophotonic pressure (see
equation 65) and magnetic field strength inside the current sheet, and
P0 and B0, respectively, are the local plasma pressure and magnetic
field strength in the upstream region. In the upstream region, we
have σ m � 1, such that the plasma beta, β = Pplasma/Pmag, is small,
i.e. P0 	 B2

0 . Consequently, the above expression simplifies to

Pcs + B2
cs

8π
� B2

0

8π
. (64)

The leptophotonic pressure in the current sheet may be decomposed
as

Pcs = Prad + P±, (65)

where Prad signifies the radiation pressure and P± denotes the pres-
sure as a result of pair production. In a relativistic current sheet, P±
becomes ∼(7/4)Prad (Uzdensky 2011), such that

Pcs ∼ 11

4
Prad, (66)

and

Prad(Tcs) = 4 σSB

3 c k4
B

(kBTcs)
4, (67)

where σSB ≡ π2k4
B/(60�

3c2) � 5.67 × 10−5 erg cm−2 s−1 K−4 is
the Stefan–Boltzmann constant and Tcs represents the temperature
inside the current sheet.

Equation (64) may then be written as

B2
0 − B2

cs = 22πPrad. (68)

Furthermore using Gauss’ law for magnetism ∇ · B = 0, we ap-
proximate

Bcs

δ
+ By

Ly

+ Bg

Lz

� 0, (69)

where we respectively parametrize the strengths of the guide field
and y component of the field as Bg = qB0 and By = (1 − q)B0, with
0 ≤ q ≤ 1/2 and B0 = Bg + By . Subsequently, we may write

Bcs � B0

[
(1 − q)

δ

Ly

+ q
δ

Lz

]
. (70)

Together with equation (53) and the relation for Lz below equa-
tion (57) this becomes

Bcs � B0

[
(1 − q)S−1/2

δ + q
δ

2πr

]
, (71)

such that we may eliminate Bcs from equation (68):

B2
0

{
1 −

[
(1 − q)S−1/2

δ + q
δ

2πr

]2
}

= 22πPrad. (72)

The above equation depends on the values for Bs, Tcs, δ, and r. To
solve equation (72), we need to write δ in terms of r via equation (54)
and require an estimate for the temperature inside the current sheet
kBTcs. It is however questionable whether kBTspec – listed in Table 1
– would represent kBTcs, since the former may rather correspond
to a Lorentz-boosted photospheric temperature of a relativistically
expanding fireball. Of necessity, we consider here the following
reasonable range of temperatures: kBTcs ∼ 250–1000 keV.

Consequently, together with Bs = 1015 G and τmin
tm = 10−4 s, we

solve equation (72) numerically for r and find

rrec ∼ (3 × 106)−107 cm, (73)

and furthermore with equation (54) we have

δ(rrec) ∼ (4−8) × 103 cm, (74)

where the lower (upper) estimates of the above equations correspond
to the upper (lower) value for kBTcs. These estimates remain equal
down to the fourth decimal for the entire range of q, and as one can
observe from equation (71), Bcs 	 B0, such that the second term
on the l.h.s. of equation (68) may be neglected to find the following
expression (for p = 1/2),

rrec ∼ 107B
2/5
s,15

(
kBTcs

250 keV

)−4/5

cm. (75)

Note that the results agree roughly with those obtained in the previ-
ous section. Additionally, we find that the dimensionless reconnec-
tion rate is approximately Mrec ≡ δ/(vAτrec) � δ/(cτmin

tm ) ∼ 10−3,
which is comparable to the reconnection rates found for solar flares
(e.g. Narukage & Shibata 2006). Moreover, note that the recon-
nection region is located high up in the magnetosphere, such that
the background magnetic field is sub-critical B0(rrec) � 1012G ∼
10−1Bqed.

5 D I SCUSSI ON

5.1 Geometry of the reconnection region

The previous calculations provide estimates for the scale of the re-
connection region involving spontaneous tearing of a global current
sheet; the sheet length (from equation 52) is Ly � c τmin

tm = c τe ∼
(3 × 106)−107 cm, the sheet thickness is δ ∼ 104 cm, and the height
of the reconnection region is r ∼ 107 cm. Here we briefly discuss
various consequences of these results.

We have assumed that the resistivity is given by a homoge-
neous background of Langmuir turbulence, which fundamentally
requires that the drift velocity of the current-carrying particles ex-
ceed the thermal velocity of the background plasma. This needs to
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be the case throughout the extensive reconnection region (>2δ ×
Ly) for impulsive tearing to be able to occur on the requisite short
time-scales.

With an estimate for the thickness of the reconnection region, we
can infer the temperature at the photosphere of the current sheet
kBTphot (Uzdensky 2011). At the photosphere, the optical depth

τ ∼ δ

λmfp
(76)

will be of order unity, where λmfp is the photon mean free path.
Assuming that this temperature is sub-relativistic, such that the pair
number density is given by

n± = 1√
2π3

(mec

�

)3
(

kBTphot

mec2

)3/2

exp

[
− mec

2

kBTphot

]
, (77)

and considering that the scattering opacity of O-mode (i.e. ordi-
nary mode) photons in the presence of a strong magnetic field
remains close to Thompson scattering opacity, σ es(O) ∼ σT ≡
(8π/3) e4/(mec

2)2 � 6.65 × 10−25 cm2, we have

λmfp(O) ∼ 1

n± σT
. (78)

Together with equation (76) we find

δ σT n±(kBTphot) ∼ 1, (79)

which can be solved for δ ∼ 104 cm to get kBTphot ∼ 27 keV. Note
however that kBTphot depends only weakly on δ.

Due to the release of high-energy radiation following the recon-
nection process, extensive pair production has resulted in a high
photospheric pair density n±(kBTphot ∼ 27keV) ∼ 1020 cm−3. Note
that this pair density greatly exceeds the charge density that is
available prior to the onset of reconnection [from equation (46) we
establish n � 1014Bs, 15r

−7/2
7 cm−3]. It is argued that the observed

spectral temperatures kBTspec (see Table 1) correspond to a Lorentz-
boosted photospheric temperature of a pair fireball that, in the wake
of the onset of the flare, expands outwards from the stationary re-
connection region relativistically (Lyutikov 2006; Uzdensky 2011),
such that

� kBTphot = kBTspec, (80)

where � denotes the bulk Lorentz factor of the ejected fireball.12

Using the result from equation (79) and assuming that the dimen-
sions of the fireball roughly correspond to those of the initial current
sheet, we obtain � ∼ 10, which is consistent with previous estimates
in the literature.

Furthermore, considering the required scale of the initial configu-
ration Ly, uniquely determined by τ e, spontaneous tearing seems an
unlikely candidate for the smaller recurrent γ -ray bursts (�1041 erg,
τ e ∼ 1 ms; Göğüş et al. 2001; Gavriil, Kaspi & Woods 2004), since
their e-folding rise times are similar to those of the giant flares, such
that Ly ∼ (3−10)R∗. These particular bursts may rather demon-
strate for instance driven reconnection through an external driver
(e.g. sudden crustal motion at magnetic footpoints or ideal insta-
bilities in smaller critically sheared magnetic arcades; Browning
et al. 2008), or comprise explosive seismic events without involv-
ing magnetospheric reconnection altogether.

12 Note that the photosphere of the relativistically expanding fireball differs
from the stationary emission region associated with the onset of the flare,
such that the bulk Lorentz factor of the latter is zero.

5.2 Linear tearing and the observed high-energy emission

In discussing linear tearing as a candidate mechanism for explaining
the fast initial rise of magnetar giant flare light curves, it has been
implicitly assumed throughout the literature that the growth of the
resistive instability directly coincides with the conversion of mag-
netic energy – via Ohmic heating and particle acceleration – into
the observed high-energy radiation (i.e. τmin

tm = τe; Lyutikov 2003;
Duncan 2004; Komissarov et al. 2007). This conjecture presumes
that (i) linear tearing dictates the rate of radiation release and (ii)
that during the linear tearing phase a significant amount of magnetic
energy is converted efficiently to produce the observed radiation in
the first place. Both assumptions will be examined further; in Sec-
tion 5.2.1 we discuss the former requisite (i), and in Sections 5.2.2
and 5.2.3 we address the latter (ii).

5.2.1 Non-thermal emission from accelerated particles

Concerning point (i) above, it should be emphasized by observ-
ing that even for comparatively well studied phenomena like solar
flares, the generation and release of radiation is not unequivocally
linked to the reconnection rate. Note that whilst solar flares are
not supposed to be directly analogous, the comparison may still
be informative. The rapid onset of a solar flare is given by the
sudden increase of hard X-ray (HXR) emission due to collisional
thick-target bremsstrahlung interactions of non-thermal particles at
the chromospheric footpoints of coronal loop structures undergoing
magnetic reconnection (Shibata & Magara 2011). Accordingly, the
observed radiation time-scales are determined by the acceleration
time-scales of the non-thermal particles.

Proposed acceleration mechanisms include direct acceleration by
reconnection-induced or field-aligned electric fields (e.g. Aschwan-
den 2006; Egedal, Daughton & Le 2012), acceleration through
shocks (Aschwanden 2006), and stochastic acceleration through
turbulence excited by reconnection outflows at the loop top or cas-
cading Alfvén waves near the footpoints (e.g. Petrosian & Liu 2004;
Fletcher & Hudson 2008; Liu et al. 2008; Liu & Fletcher 2009).
None of the above processes guarantee a straightforward connec-
tion between the time-scales of linear tearing and that of radiation
release. Moreover, such acceleration mechanisms generally rely
on the later phases of reconnection (e.g. non-linear tearing; see
Section 5.2.3) or rather its large-scale effects, such as reconnection
jets that excite MHD turbulence or the catastrophic rearrangement
of the global magnetic field topology. In the latter case, the amount
and rate of energy release will be determined more by the dynamic
restructuring of the field, than on the dissipation of an extended
current sheet (Hoshino & Lyubarsky 2012).

Efficient particle acceleration in magnetar magnetospheres may
however require local regions where the magnetic field becomes
small enough, since considerable synchrotron losses might oth-
erwise impede any significant acceleration. Acceleration through
reconnection-induced electric fields localized at magnetic x-points
seems fitting in this regard, since not only does By → 0 but the
presence of E × B-drift also focuses the trajectory of the charged
particles in the acceleration region (Speiser 1965). PIC simulations
of relativistic reconnection in pair plasmas disclose short accelera-
tion time-scales (Zenitani & Hoshino 2001), such that the time-scale
on which the radiation is generated is the reconnection rate.

None the less, a major complication is given by the copious pair
production that will ensue upon release of high-energy radiation in
the presence of an ultra-strong magnetic field (e.g. Harding & Lai
2006), causing the reconnection region to become optically thick.
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The observed radiation time-scales will therefore not necessarily
represent the time-scales associated with reconnection dynamics
(Uzdensky 2011; Hoshino & Lyubarsky 2012). To further constrain
magnetar burst trigger mechanisms, via emission time-scales, will
require a better understanding of radiation transport in the magnetar
magnetosphere.

5.2.2 Phases of tearing: linear and nonlinear

Exponential growth of the magnetic island proceeds until their half-
width

w(t) ∝ exp

[
t

τtm

]
(81)

becomes comparable to the size of the resistive sublayer εδ; here
non-linear effects become important. Analytic calculations disclose
a transition from exponential to algebraic growth (∝ tα), once this
stage is reached (Rutherford 1973). Numerical simulations con-
firm this strong change in reconnection rate, even though it is less
significant when k 	 1 and Sδ � 1 (Steinolfson & van Hoven
1984). Moreover, it is found that the non-linear regime sets in very
quickly, after only a few e-folding times, such that one would ex-
pect to observe a considerable change in reconnection rate just
moments after the onset of the instability. With τmin

tm ∼ 10−4 ms, the
exponential phase of the light curve would only last a few tenths
of milliseconds to a millisecond, followed by a notable decline in
count rate due to the transition from linear to non-linear tearing. A
break in the increase of the count rate during the initial rise to peak
has been observed for the SGR 1806−20 flare by Terasawa et al.
(2005), Schwartz et al. (2005), and Tanaka et al. (2007) after a few
e-folding times. The latter reference also finds a similar break in the
SGR 1900+14 giant flare.

Note that the assumption of a constant reconnection rate for
the duration of the hard spike (τ spike ∼ 0.1–1 s), as applied in
Section 4.1, is suspect in the light of non-linearity of the mode; the
obtained estimates for r and δ [equations (61) and (62)] are lower
limits in this regard.

5.2.3 Coalescence and impulsive bursty reconnection

The least stable long-wavelength tearing modes (λmax ∼ Ly) tend to
saturate soon after the onset of the non-linear phase. For efficient
reconnection to occur, the presence of a significantly strong exter-
nal driver (e.g. sudden crustal motions at the footpoints of sheared
arcades, the onset of an ideal instability, or the catastrophic ejection
of a flux rope) may be required, which forces a current sheet to be-
come unstable to shorter wavelength modes (λmax 	 Ly), such that
a chain-like structure of magnetic islands is formed before the non-
linear phase sets in (Uzdensky & Loureiro 2014). This configuration
is consequently unstable to the coalescence instability, whereby the
magnetic islands approach each other through mutually attractive
Lorentz forces since they essentially comprise parallel flowing cur-
rent concentrations. Island coalescence is typically subdivided into
two phases: (1) the ideal MHD phase, where the current loops ap-
proach one another, and (2) the resistive reconnection phase, where
due to finite resistivity (η �= 0) and large field gradients between
the approaching current loops, the loops merge to form one current
loop with an increased cross-section, i.e. larger magnetic island.
Stability analysis was performed by Finn & Kaw (1977) on a par-
ticular periodic island-chain configuration described by a Fadeev

force-free equilibrium (Fadeev, Kvabtskhava & Komarov 1965),

ψ0 = ln[cosh(kx) + ε cos(ky)],

B0 = B0 ẑ × ∇ψ0,

∇2ψ0 = 4πjz0 = (1 − ε2)k2 exp [−2ψ0] ,

where ψ0 is the equilibrium magnetic flux function, B0 the local
(background) magnetic field, jz0 the equilibrium current directed
perpendicular to the reconnection plane, and 0 < ε < 1 the peaked-
ness parameter of the current concentration in the magnetic islands.
Subsequent numerical simulations have shown that, for a large range
of Sδ , the coalescence growth rate is much greater than the tearing
growth rate (Pritchett & Wu 1979) and that it depends critically
on the value for ε (Bhattacharjee, Brunel & Tajima 1983), linear
tearing corresponding to ε = 0.

The coalescence instability is characterized by two time-scales
associated with its distinct phases (Kliem 1995). During the ideal
phase, the current loops approach each other on a hydromagnetic
time-scale, whereby the length-scale is given by the separation dis-
tance of paired current loops λC,

τC1 ∼ ε−1 λC

vA
(82)

with δ � λC � λmax. In general, τC1 	 τmin
tm , yet no magnetic energy

is dissipated in the process. During the resistive phase, when the
current loops merge, ‘anti-reconnection’ occurs in between the ap-
proaching islands. The reconnection rate is enhanced by the external
driving forces of the converging current loops, such that in general
τC2 < τmin

tm . Moreover, for strongly peaked current concentrations
(ε → 1), we have τC1 ∼ τC2 	 τmin

tm . For λmax
C � λmax ∼ 106 cm, the

coalescence time-scale becomes comparable to the magnetospheric
light crossing time, i.e. τC ∼ τ ext

A ε−1 ms.
Coalescence following tearing converts the bulk of the free mag-

netic energy in the current sheet, such that the island growth phase
may act as mere prelude to the explosive energy release of merging
current loops (Leboeuf, Tajima & Dawson 1982). Its rapid develop-
ment and ability to convert a significant fraction of magnetic energy
argue in favour of coalescence, rather than tearing, as an explana-
tion for the impulsive phase of flares (Tajima, Brunel & Sakai 1982;
Sakai & Ohsawa 1987; Tajima et al. 1987; Kliem 1995; Schumacher
& Kliem 1997). The observed giant flare emission may therefore
be a proxy of the non-linear, rather than the linear, tearing phase.

Furthermore, for higher values of Sδ and σ m, a non-linear pro-
cess known as ‘impulsive bursty reconnection’ may occur, whereby
a cycle of slow tearing, rapid coalescence, current sheet thinning,
and further secondary tearing (i.e. the plasmoid instability) at an in-
creased rate repeats successively (Leboeuf et al. 1982; Priest 1985;
Uzdensky, Loureiro & Schekochihin 2010; Takamoto 2013). Con-
sequently, energy is released during separate coalescence events in
a fragmentary and quasi-periodic manner. This process is advanced
to explain the periodic temporal fine structure of HXR emission
and coherent drifting radio bursts associated with discrete (bidirec-
tional) electron beams observed during the impulsive phase of solar
flares (Aschwanden et al. 1995; Kliem, Karlicky & Benz 2000;
Karlicky 2004). QPOs of ν ∼ 102 Hz, which might be associated
with separate energy injections, have also been detected during the
initial phases of the magnetar giant flares: see Section 2.2. These
distinct energy surges may be interpreted as quasi-periodic peaks
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in coalescence rates,13 resulting from impulsive bursty reconnec-
tion. Precise timing observations of hypothesized (drifting) radio
burst from magnetars (Lyutikov 2002) may greatly help to further
probe the reconnection substructure (e.g. separate plasmoids), re-
connection rate, and density of the acceleration region. Yet even
though various magnetars show radio emission (e.g. Camilo et al.
2006), no such bursts of coherent radio emission coincident with
the (recurrent) γ -ray bursts have been observed to date.

The total energy release through a multitude of coalescence
events may be estimated accordingly (Krüger, Kliem & Hildebrandt
1989; Kliem 1995),

U tot
C � (NC − 1)3

NC

λ2
CLzB

2
0

24π2
ln

(
λC

δ

)
, (83)

where NC is the number of individual coalescence events. If we
estimate the total number of coalescence events during the impulsive
phase of a giant flares as follows,

NC � ντspike
Ly

λmax
C

∼ 102, (84)

we find for the total energy release through dynamic current sheet
reconnection

U tot
C ∼ 1045 N2

C,2(λmax
C,6 )2Lz,6B

2
s,15r

−5
7 ln

(
λmax

C,6

δ4

)
erg, (85)

where Lz, 6 = Lz/106 cm is the length of a current loop. This estimate
is consistent with the observed energy output of the initial spike –
see Table 1.

6 SU M M A RY

To better understand the extreme nature of the explosive onset of
magnetar giant flares, we have discussed impulsive reconnection
through the spontaneous development of the linear tearing insta-
bility in a globally sheared external field as a candidate trigger
mechanism. Upon reexamination of previous works on the (rela-
tivistic) linear tearing mode, we found that the minimum growth
time in magnetar magnetospheres is τmin

tm ∼ 10−1 ms (equation 51).
This estimate is consistent with the typical e-folding rise times
(τ e ∼ 0.1–1 ms) of the giant flare light curves (see Table 1). Our
result differs significantly from the one found by Lyutikov (2003,
τL03

tm ∼ 10 ms). Even though the rescaling of the current sheet thick-
ness (by a factor of 10−2) has a larger effect on the final result, the
difference is however essentially due to an error in that calculation.

Assuming the validity of the assumption that the exponential rise
time of the giant flare is a proxy for the linear growth time of the
tearing mode τmin

tm = τe, we obtained order-of-magnitude estimates
for the thickness of the current sheet and height of the base of the
reconnection region, respectively δ ∼ 104 cm and r ∼ 107 cm,
through elementary pressure balance and energy-conservation con-
siderations. Additionally, we found that the global length of the
current sheet would have to be Ly ∼ (3−10) R∗, which is reason-
able for the giant flares, yet problematic for the smaller recurrent
bursts, since such large unstable regions would have to develop on
very short time-scales �T ∼ 100 s, where �T represents the typical
waiting time of recurrent bursts (Göğüş et al. 1999, 2000).

Finally, we discussed the obtained constraints on the reconnec-
tion geometry and evaluated the soundness of the aforementioned

13 Quasi-periodic pulsations are ubiquitously observed in solar flares; among
self-oscillatory reconnection, a multitude of alternative mechanisms have
been proposed to explain these phenomena (Nakariakov & Melnikov 2009).

assumption of equating an MHD growth time with an emission
time-scale. Regarding the latter, it is not apparent whether linear
tearing dictates the rate of radiation release and if during the linear
tearing phase magnetic field dissipation occurs efficiently enough
to generate the observed emission. Considering the impulsive phase
of solar flares, there is no unequivocal connection between linear
tearing and the observed high-energy emission that is ultimately ra-
diated by accelerated non-thermal particles. Moreover, substantial
pair production in magnetar magnetospheres may obscure the emis-
sion resulting from magnetic field dissipation through reconnection,
altogether.

Furthermore, non-linear effects become significant soon after the
onset of linear tearing and in general reduce the reconnection rate
considerably. Fast and efficient reconnection during the non-linear
impulsive bursty regime that may follow tearing requires however
the presence of a strong external driver e.g. rapid crustal motion or
catastrophic loss of equilibrium of external magnetic field configu-
rations. Accordingly, we propose that future research into magneto-
spheric trigger mechanisms for magnetar (giant) bursts investigates
driven reconnection scenarios, where the emission time-scales may
constrain the development of the external driver, the non-linear re-
connection phase, or the intense reconnection after-effects.
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Krüger A., Kliem B., Hildebrandt J., 1989, ESA-SP, 285, 169
Lander S. K., 2014, MNRAS, 437, 424
Lander S. K., Jones D. I., 2012, MNRAS, 424, 482
Lander S. K., Andersson N., Antonopoulou D., Watts A. L., 2015, MNRAS,

449, 2047
Leboeuf J. N., Tajima T., Dawson J. M., 1982, Phys. Fluids, 25, 784
Levin Y., Lyutikov M., 2012, MNRAS, 427, 1574
Link B., 2014, MNRAS, 441, 2676
Liu S., Fletcher L., 2009, ApJ, 701, L34
Liu W., Petrosian V., Dennis B. R., Jiang Y. W., 2008, ApJ, 676, 704
Low B. C., 1973, ApJ, 181, 209
Lyutikov M., 2002, ApJ, 580, L65
Lyutikov M., 2003, MNRAS, 346, 540
Lyutikov M., 2006, MNRAS, 367, 1594
Masada Y., Nagataki S., Shibata K., Terasawa T., 2010, PASJ, 62, 1093
Mazets E. P., Golenetskii S. V., 1981, Ap&SS, 75, 47
Mazets E. P., Golenetskii S. V., Il’Inskii V. N., Aptekar R. L., Guryan Iu.

A., 1979, Nature, 282, 587
Mazets E. P., Cline T. L., Aptekar R. L., Butterworth P. S., Frederiks D. D.,

Golenetskii S. V., Il’Inskii V. N., Pal’Shin V. D., 1999, Astron. Lett., 25,
635

Mereghetti S., 2008, A&AR, 15, 225
Mereghetti S. et al., 2005, ApJ, 628, 938
Mereghetti S. et al., 2006, ApJ, 653, 1423
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