13 research outputs found

    Increased susceptibility of transgenic mice expressing human PrP to experimental sheep bovine spongiform encephalopathy is not due to increased agent titre in sheep brain tissue

    Get PDF
    Rona Barron - ORCID: https://orcid.org/0000-0003-4512-9177Bovine spongiform encephalopathy (BSE) in cattle and variant Creutzfeldt–Jakob disease in humans have previously been shown to be caused by the same strain of transmissible spongiform encephalopathy agent. It is hypothesized that the agent spread to humans following consumption of food products prepared from infected cattle. Despite evidence supporting zoonotic transmission, mouse models expressing human prion protein (HuTg) have consistently shown poor transmission rates when inoculated with cattle BSE. Higher rates of transmission have however been observed when these mice are exposed to BSE that has been experimentally transmitted through sheep or goats, indicating that humans may potentially be more susceptible to BSE from small ruminants. Here we demonstrate that increased transmissibility of small ruminant BSE to HuTg mice was not due to replication of higher levels of infectivity in sheep brain tissue, and is instead due to other specific changes in the infectious agent.https://doi.org/10.1099/vir.0.065730-095pubpub

    Increased susceptibility of transgenic mice expressing human PrP to experimental sheep BSE is not due to increased agent titre in sheep brain tissue

    Get PDF
    Bovine spongiform encephalopathy (BSE) in cattle and variant Creutzfeldt–Jakob disease in humans have previously been shown to be caused by the same strain of transmissible spongiform encephalopathy agent. It is hypothesized that the agent spread to humans following consumption of food products prepared from infected cattle. Despite evidence supporting zoonotic transmission, mouse models expressing human prion protein (HuTg) have consistently shown poor transmission rates when inoculated with cattle BSE. Higher rates of transmission have however been observed when these mice are exposed to BSE that has been experimentally transmitted through sheep or goats, indicating that humans may potentially be more susceptible to BSE from small ruminants. Here we demonstrate that increased transmissibility of small ruminant BSE to HuTg mice was not due to replication of higher levels of infectivity in sheep brain tissue, and is instead due to other specific changes in the infectious agent

    Chronic wasting disease and atypical forms of bovine spongiform encephalopathy and scrapie are not transmissible to mice expressing wild-type levels of human prion protein

    Get PDF
    Rona Barron - ORCID: 0000-0003-4512-9177 https://orcid.org/0000-0003-4512-9177Item not available in this repository.The association between bovine spongiform encephalopathy (BSE) and variant Creutzfeldt–Jakob disease (vCJD) has demonstrated that cattle transmissible spongiform encephalopathies (TSEs) can pose a risk to human health and raises the possibility that other ruminant TSEs may be transmissible to humans. In recent years, several novel TSEs in sheep, cattle and deer have been described and the risk posed to humans by these agents is currently unknown. In this study, we inoculated two forms of atypical BSE (BASE and H-type BSE), a chronic wasting disease (CWD) isolate and seven isolates of atypical scrapie into gene-targeted transgenic (Tg) mice expressing the human prion protein (PrP). Upon challenge with these ruminant TSEs, gene-targeted Tg mice expressing human PrP did not show any signs of disease pathology. These data strongly suggest the presence of a substantial transmission barrier between these recently identified ruminant TSEs and humans.https://doi.org/10.1099/vir.0.042507-093pubpub

    Similarities of Variant Creutzfeldt-Jakob Disease Strain in Mother and Son in Spain to UK Reference Case

    Get PDF
    We investigated transmission characteristics of variant Creutzfeldt-Jakob disease in a mother and son from Spain. Despite differences in patient age and disease manifestations, we found the same strain properties in these patients as in UK vCJD cases. A single strain of agent appears to be responsible for all vCJD cases to date

    Host PrP glycosylation: a major factor determining the outcome of prion infection

    Get PDF
    The expression of the prion protein (PrP) is essential for transmissible spongiform encephalopathy (TSE) or prion diseases to occur, but the underlying mechanism of infection remains unresolved. To address the hypothesis that glycosylation of host PrP is a major factor influencing TSE infection, we have inoculated gene-targeted transgenic mice that have restricted N-linked glycosylation of PrP with three TSE strains. We have uniquely demonstrated that mice expressing only unglycosylated PrP can sustain a TSE infection, despite altered cellular location of the host PrP. Moreover we have shown that brain material from mice infected with TSE that have only unglycosylated PrP(Sc) is capable of transmitting infection to wild-type mice, demonstrating that glycosylation of PrP is not essential for establishing infection within a host or for transmitting TSE infectivity to a new host. We have further dissected the requirement of each glycosylation site and have shown that different TSE strains have dramatically different requirements for each of the glycosylation sites of host PrP, and moreover, we have shown that the host PrP has a major role in determining the glycosylation state of de novo generated PrP(Sc)

    Increased Susceptibility of Human-PrP Transgenic Mice to Bovine Spongiform Encephalopathy Infection following Passage in Sheep

    No full text
    Rona Barron - ORCID: 0000-0003-4512-9177 https://orcid.org/0000-0003-4512-9177Item not available in this repository.The risk of the transmission of ruminant transmissible spongiform encephalopathy (TSE) to humans was thought to be low due to the lack of association between sheep scrapie and the incidence of human TSE. However, a single TSE agent strain has been shown to cause both bovine spongiform encephalopathy (BSE) and human vCJD, indicating that some ruminant TSEs are transmissible to humans. While the transmission of cattle BSE to humans in transgenic mouse models has been inefficient, indicating the presence of a significant transmission barrier between cattle and humans, BSE has been transmitted to a number of other species. Here, we aimed to further investigate the human transmission barrier following the passage of BSE in a sheep. Following inoculation with cattle BSE, gene-targeted transgenic mice expressing human PrP showed no clinical or pathological signs of TSE disease. However, following inoculation with an isolate of BSE that had been passaged through a sheep, TSE-associated vacuolation and proteinase K-resistant PrP deposition were observed in mice homozygous for the codon 129-methionine PRNP gene. This observation may be due to higher titers of the BSE agent in sheep or an increased susceptibility of humans to BSE prions following passage through a sheep. However, these data confirm that, contrary to previous predictions, it is possible that a sheep prion is transmissible to humans and that BSE from other species is a public health risk.https://doi.org/10.1128/JVI.01578-1085pubpub

    Increased Susceptibility of Human-PrP Transgenic Mice to Bovine Spongiform Encephalopathy Infection following Passage in Sheep▿ †

    Get PDF
    The risk of the transmission of ruminant transmissible spongiform encephalopathy (TSE) to humans was thought to be low due to the lack of association between sheep scrapie and the incidence of human TSE. However, a single TSE agent strain has been shown to cause both bovine spongiform encephalopathy (BSE) and human vCJD, indicating that some ruminant TSEs are transmissible to humans. While the transmission of cattle BSE to humans in transgenic mouse models has been inefficient, indicating the presence of a significant transmission barrier between cattle and humans, BSE has been transmitted to a number of other species. Here, we aimed to further investigate the human transmission barrier following the passage of BSE in a sheep. Following inoculation with cattle BSE, gene-targeted transgenic mice expressing human PrP showed no clinical or pathological signs of TSE disease. However, following inoculation with an isolate of BSE that had been passaged through a sheep, TSE-associated vacuolation and proteinase K-resistant PrP deposition were observed in mice homozygous for the codon 129-methionine PRNP gene. This observation may be due to higher titers of the BSE agent in sheep or an increased susceptibility of humans to BSE prions following passage through a sheep. However, these data confirm that, contrary to previous predictions, it is possible that a sheep prion is transmissible to humans and that BSE from other species is a public health risk

    Lesion Profile Analysis of TSE-Inoculated PrP Glycosylation Mutant Mice

    No full text
    <div><p>G2 and 129/Ola mice were inoculated i.c. with TSE strains ME7 (A), 79A (B), or 301C (C) and G1 mice were inoculated i.c. with 79A (D). Squares: wild type; open triangles: G2; and solid triangles: G1. All mice (12 in each group) used in these analyses were clinically and pathologically positive.</p> <p>Nine gray matter areas: 1, dorsal medulla; 2, cerebellar cortex; 3, superior colliculus; 4, hypothalamus; 5, medial thalamus; 6, hippocampus; 7, septum; 8, cerebral cortex; 9, forebrain cortex and three white matter areas: 1*, cerebellar white matter; 2*, mesencephalic tegmentum; 3*, pyramidal tract (<i>x</i>-axis) were scored on scales of 0–5 for gray and 0–3 for white matter areas (<i>y</i>-axis). The mean scores for each area are shown (error bars ± SEM). No differences between wild-type and G2 mice were observed after inoculation with ME7 (A) or 79A (B); however some differences in the superior colliculus and white matter areas were observed between the two groups when inoculated with 301C (C). Differences were observed between wild-type and G1 mice inoculated with 79A (D) especially in area: 2, 4, 8, and in the white matter.</p></div

    Western Blot Analysis of Brains from Second Passage of 79A-Infected G2 and Wild-Type Mice

    No full text
    <div><p>Brain homogenates from (A) clinically and pathologically positive 79A inoculated G2 or wild-type, 129/Ola (Wt), mice were used to i.c. inoculate 129/Ola mice.</p> <p>(B) The 79A inoculated G2 mouse brains lacked diglycosylated PrP<sup>Sc</sup>, but all 129/Ola mice inoculated with 79A/G2 or 79A/Wt brain material had di-, mono-, and unglycosylated PrP<sup>Sc</sup>.</p> <p>(C) Brain of a C57Bl mouse infected with 79A used as comparison for the glycotype.</p> <p>Brain homogenates from (D) clinically and pathologically positive ME7 inoculated-G2 or wild-type, 129/Ola (Wt), mice were used to intracerebrally inoculate 129/Ola mice.</p> <p>(E) The ME7 inoculated G2 mouse brains lacked diglycosylated PrP<sup>Sc</sup> but all 129/Ola mice inoculated with ME7/G2 or ME7/Wt brain material had di-, mono-, and unglycosylated PrP<sup>Sc</sup>.</p> <p>(F) Brain of a C57Bl mouse infected with ME7 used as comparison for the glycotype.</p> <p>Lanes 1–6: TSE-inoculated 129/Ola mouse brain. All samples were PK treated.</p></div

    Chronic wasting disease and atypical forms of bovine spongiform encephalopathy and scrapie are not transmissible to mice expressing wild-type levels of human prion protein

    No full text
    Rona Barron - ORCID: 0000-0003-4512-9177 https://orcid.org/0000-0003-4512-9177Item not available in this repository.The association between bovine spongiform encephalopathy (BSE) and variant Creutzfeldt–Jakob disease (vCJD) has demonstrated that cattle transmissible spongiform encephalopathies (TSEs) can pose a risk to human health and raises the possibility that other ruminant TSEs may be transmissible to humans. In recent years, several novel TSEs in sheep, cattle and deer have been described and the risk posed to humans by these agents is currently unknown. In this study, we inoculated two forms of atypical BSE (BASE and H-type BSE), a chronic wasting disease (CWD) isolate and seven isolates of atypical scrapie into gene-targeted transgenic (Tg) mice expressing the human prion protein (PrP). Upon challenge with these ruminant TSEs, gene-targeted Tg mice expressing human PrP did not show any signs of disease pathology. These data strongly suggest the presence of a substantial transmission barrier between these recently identified ruminant TSEs and humans.https://doi.org/10.1099/vir.0.042507-093pubpub
    corecore