3,084 research outputs found

    Warm Dark Haloes Accretion Histories and their Gravitational Signatures

    Full text link
    We study clusters in Warm Dark Matter (WDM) models of a thermally produced dark matter particle 0.50.5 keV in mass. We show that, despite clusters in WDM cosmologies having similar density profiles as their Cold Dark Matter (CDM) counterparts, the internal properties, such as the amount of substructure, shows marked differences. This result is surprising as clusters are at mass scales that are {\em a thousand times greater} than that at which structure formation is suppressed. WDM clusters gain significantly more mass via smooth accretion and contain fewer substructures than their CDM brethren. The higher smooth mass accretion results in subhaloes which are physically more extended and less dense. These fine-scale differences can be probed by strong gravitational lensing. We find, unexpectedly, that WDM clusters have {\em higher} lensing efficiencies than those in CDM cosmologies, contrary to the naive expectation that WDM clusters should be less efficient due to the fewer substructures they contain. Despite being less dense, the larger WDM subhaloes are more likely to have larger lensing cross-sections than CDM ones. Additionally, WDM subhaloes typically reside at larger distances, which radially stretches the critical lines associated with strong gravitational lensing, resulting in excess in the number of clusters with large radial cross-sections at the 2σ\sim2\sigma level. Though lensing profile for an individual cluster vary significantly with the line-of-sight, the radial arc distribution based on a sample of 100\gtrsim100 clusters may prove to be the crucial test for the presence of WDM.Comment: 13 pages, 14 figures, submitted to MNRA

    Using Velocity Dispersion to Estimate Halo Mass: Is the Local Group in Tension with Λ\LambdaCDM?

    Full text link
    Satellite galaxies are commonly used as tracers to measure the line-of-sight velocity dispersion (σLOS\sigma_{\rm LOS}) of the dark matter halo associated with their central galaxy, and thereby to estimate the halo's mass. Recent observational dispersion estimates of the Local Group, including the Milky Way and M31, suggest σ\sigma\sim50 km/s, which is surprisingly low when compared to the theoretical expectation of σ\sigma\sim100s km/s for systems of their mass. Does this pose a problem for Λ\LambdaCDM? We explore this tension using the {\small{SURFS}} suite of NN-body simulations, containing over 10000 (sub)haloes with well tracked orbits. We test how well a central galaxy's host halo velocity dispersion can be recovered by sampling σLOS\sigma_{\rm LOS} of subhaloes and surrounding haloes. Our results demonstrate that σLOS\sigma_{\rm LOS} is biased mass proxy. We define an optimal window in vLOSv_{\rm LOS} and projected distance (DpD_p) -- 0.5Dp/Rvir1.00.5\lesssim D_p/R_{\rm vir}\lesssim1.0 and vLOS0.5Vescv_{\rm LOS} \lesssim0.5V_{\rm esc}, where RvirR_{\rm vir} is the virial radius and VescV_{\rm esc} is the escape velocity -- such that the scatter in LOS to halo dispersion is minimised - σLOS=(0.5±0.1)σv,H\sigma_{\rm LOS}=(0.5\pm0.1)\sigma_{v,{\rm H}}. We argue that this window should be used to measure line-of-sight dispersions as a proxy for mass, as it minimises scatter in the σLOSMvir\sigma_{\rm LOS}-M_{\rm vir} relation. This bias also naturally explains the results from \cite{mcconnachie2012a}, who used similar cuts when estimating σLOS,LG\sigma_{\rm LOS,LG}, producing a bias of σLG=(0.44±0.14)σv,H\sigma_{\rm LG}=(0.44\pm0.14)\sigma_{v,{\rm H}}. We conclude that the Local Group's velocity dispersion does not pose a problem for Λ\LambdaCDM and has a mass of logMLG,vir/M=12.02.0+0.8\log M_{\rm LG, vir}/M_\odot=12.0^{+0.8}_{-2.0}.Comment: 8 pages, 7 figures, accepted for publicatio

    Hidden from view: Coupled Dark Sector Physics and Small Scales

    Full text link
    We study cluster mass dark matter haloes, their progenitors and surroundings in an coupled Dark Matter-Dark Energy model and compare it to quintessence and Λ\LambdaCDM models with adiabatic zoom simulations. When comparing cosmologies with different expansions histories, growth functions & power spectra, care must be taken to identify unambiguous signatures of alternative cosmologies. Shared cosmological parameters, such as σ8\sigma_8, need not be the same for optimal fits to observational data. We choose to set our parameters to Λ\LambdaCDM z=0z=0 values. We find that in coupled models, where DM decays into DE, haloes appear remarkably similar to Λ\LambdaCDM haloes despite DM experiencing an additional frictional force. Density profiles are not systematically different and the subhalo populations have similar mass, spin, and spatial distributions, although (sub)haloes are less concentrated on average in coupled cosmologies. However, given the scatter in related observables (Vmax,RVmaxV_{\rm max},R_{V_{\rm max}}), this difference is unlikely to distinguish between coupled and uncoupled DM. Observations of satellites of MW and M31 indicate a significant subpopulation reside in a plane. Coupled models do produce planar arrangements of satellites of higher statistical significance than Λ\LambdaCDM models, however, in all models these planes are dynamically unstable. In general, the nonlinear dynamics within and near large haloes masks the effects of a coupled dark sector. The sole environmental signature we find is that small haloes residing in the outskirts are more deficient in baryons than their Λ\LambdaCDM counterparts. The lack of a pronounced signal for a coupled dark sector strongly suggests that such a phenomena would be effectively hidden from view.Comment: 13 pages, 14 figures, 2 tables, accepted for publication in MNRA

    Integrated early years systems : a review of international evidence

    Get PDF

    Controlled reversible debundling of single-walled carbon nanotubes by photo- switchable dendritic surfactants

    Get PDF
    Stimulus responsive surfactants based on dendritic glycerol azobenzene conjugates were used to solubilize and debundle single-walled carbon nanotubes in aqueous media. Their debundling property as well as their reaggregation behavior upon irradiation with light was examined and light triggered reversible bundling and precipitation are shown
    corecore