26 research outputs found

    Menelusuri Kebenaran Letusan Gunung Merapi 1006

    Full text link
    Http://dx.doi.org/10.17014/ijog.vol1no4.20064Until now, the large eruption of Merapi in 1006 is believed to take place although the truth is still debatable. Previous investigation proposed that the ”pralaya” of the Ancient Mataram Kingdom in 928 Saka (1006) was due to a volcanic activity. Bemmelen also inferred that impact of the eruption had destroyed and covered the Mendut and Borobudur Temples and dammed the Progo River. However, if the “pralaya” was caused by Merapi eruption, why the deposit that correlates to the the eruption is not recognized. If so, the eruption that covered the temples should have been very large, and left deposits around Merapi and of course easy to find. Historically, the “pralaya“ mentioned in the Pucangan Inscription did not happen in 1006, but in 1016 or 1017. However the “pralaya“ was caused by the attack of King Wurawari, not by the Merapi eruption. According to the history of Merapi eruptions, 11 large eruptions have occurred since 3000 years ago. However, none of those fi t with 1006 eruption. Except the large eruption (VEI 3-4), that produced Selo tephra, dated 1112 ± 73 years BP (765-911)

    Organ Donation and Utilization in the United States, 1997–2006

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75743/1/j.1600-6143.2008.02171.x.pd

    Benzene (update)

    Get PDF
    prepared by Syracuse Research Corporation under contract no. 200-2004-09793 ; prepared for U.S. Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry."August 2007.""A Toxicological Profile for Benzene, Draft for Public Comment was released in August 2005. This edition supersedes any previously released draft or final profile"--P. iii.Chemical managers/authors: Sharon Wilbur, Sam Keith, Obaid Faroon, ATSDR, Division of Toxicology and Environmental Medicine, Atlanta, GA; David Wohlers, Julie Stickney,.Sari Paikoff,.Gary Diamond, Antonio Quin\ucc\u192ones-Rivera,.Syracuse Research Corporation, North Syracuse, NY --p. ix.Also available via the World Wide Web.Includes bibliographical references (p. 313-376) and index

    On whether azimuthal isotropy and alongshelf translational invariance are present in low-frequency acoustic propagation along the New Jersey shelfbreak

    Get PDF
    Author Posting. © Acoustical Society of America, 2012. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 131 (2012): 1762-1781, doi:10.1121/1.3672644.To understand the issues associated with the presence (or lack) of azimuthal isotropy and horizontal (along isobath) invariance of low-frequency (center frequencies of 600 Hz and 900 Hz) acoustic propagation in a shelfbreak environment, a series of experiments were conducted under the Autonomous Wide-Aperture Cluster for Surveillance component of the Shallow Water 2006 experiment. Transmission loss data reported here were from two mobile acoustic sources executing (nearly) circular tracks transmitting to sonobuoy receivers in the circle centers, and from one 12.5 km alongshelf acoustic track. The circle radii were 7.5 km. Data are from September 8, 2006. Details of the acoustic and environmental measurements are presented. Simple analytic and computer models are used to assess the variability expected due to the ocean and seabed conditions encountered. A comparison of model results and data is made, which shows preliminary consistency between the data and the models, but also points towards further work that should be undertaken specifically in enlarging the range and frequency parameter space, and in looking at integrated transmission loss.Office of Naval Research Code 32

    Time-evolving acoustic propagation modeling in a complex ocean environment

    Get PDF
    During naval operations, sonar performance estimates often need to be computed in-situ with limited environmental information. This calls for the use of fast acoustic propagation models. Many naval operations are carried out in challenging and dynamic environments. This makes acoustic propagation and sonar performance behavior particularly complex and variable, and complicates prediction. Using data from a field experiment, we have investigated the accuracy with which acoustic propagation loss (PL) can be predicted, using only limited modeling capabilities. Environmental input parameters came from various sources that may be available in a typical naval operation. The outer continental shelf shallow-water experimental area featured internal tides, packets of nonlinear internal waves, and a meandering water mass front. For a moored source/receiver pair separated by 19.6 km, the acoustic propagation loss for 800 Hz pulses was computed using the peak amplitude. The variations in sound speed translated into considerable PL variability of order 15 dB. Acoustic loss modeling was carried out using a data-driven regional ocean model as well as measured sound speed profile data for comparison. The acoustic model used a two-dimensional parabolic approximation (vertical and radial outward wavenumbers only). The variance of modeled propagation loss was less than that measured. The effect of the internal tides and sub-tidal features was reasonably well modeled; these made use of measured sound speed data. The effects of nonlinear waves were not well modeled, consistent with their known three-dimensional effects but also with the lack of measurements to initialize and constrain them.Netherlands. Ministry of DefenceUnited States. Office of Naval Research (Grant N00014-12-1-0944 (ONR6.2))United States. Office of Naval Research (Grant N00014-08-1-1097 (ONR6.1))United States. Office of Naval Research (Grant N00014-08-1-0680 (PLUS-SEAS)

    Acoustics and oceanographic observations collected during the QPE Experiment by Research Vessels OR1, OR2 and OR3 in the East China Sea in the Summer of 2009

    Get PDF
    This document describes data, sensors, and other useful information pertaining to the ONR sponsored QPE field program to quantify, predict and exploit uncertainty in observations and prediction of sound propagation. This experiment was a joint operation between Taiwanese and U.S. researchers to measure and assess uncertainty of predictions of acoustic transmission loss and ambient noise, and to observe the physical oceanography and geology that are necessary to improve their predictability. This work was performed over the continental shelf and slope northeast of Taiwan at two sites: one that was a relatively flat, homogeneous shelf region and a more complex geological site just shoreward of the shelfbreak that was influenced by the proximity of the Kuroshio Current. Environmental moorings and ADCP moorings were deployed and a shipboard SeaSoar vehicle was used to measure environmental spatial structure. In addition, multiple bottom moored receivers and a horizontal hydrophone array were deployed to sample transmission loss from a mobile source and ambient noise. The acoustic sensors, environmental sensors, shipboard resources, and experiment design, and their data, are presented and described in this technical report.Funding was provided by the Office of Naval Research under Contract No. N00014-08-1-076

    Identifying analogues for data-limited volcanoes using hierarchical clustering and expert knowledge: a case study of Melimoyu (Chile)

    Get PDF
    Determining the eruption frequency-Magnitude (f-M) relationship for data-limited volcanoes is challenging since it requires a comprehensive eruption record of the past eruptive activity. This is the case for Melimoyu, a long-dormant and data-limited volcano in the Southern Volcanic Zone (SVZ) in Chile with only two confirmed Holocene eruptions (VEI 5). To supplement the eruption records, we identified analogue volcanoes for Melimoyu (i.e., volcanoes that behave similarly and are identified through shared characteristics) using a quantitative and objective approach. Firstly, we compiled a global database containing 181 variables describing the eruptive history, tectonic setting, rock composition, and morphology of 1,428 volcanoes. This database was filtered primarily based on data availability into an input dataset comprising 37 numerical variables for 438 subduction zone volcanoes. Then, we applied Agglomerative Nesting, a bottom-up hierarchical clustering algorithm on three datasets derived from the input dataset: 1) raw data, 2) output from a Principal Component Analysis, and 3) weighted data tuned to minimise the dispersion in the absolute probability per VEI. Lastly, we identified the best set of analogues by analysing the dispersion in the absolute probability per VEI and applying a set of criteria deemed important by the local geological service, SERNAGEOMIN, and VB. Our analysis shows that the raw data generate a low dispersion and the highest number of analogues (n = 20). More than half of these analogues are in the SVZ, suggesting that the tectonic setting plays a key role in the clustering analysis. The eruption f-M relationship modelled from the analogue’s eruption data shows that if Melimoyu has an eruption, there is a 49% probability (50th percentile) of it being VEI≥4. Meanwhile, the annual absolute probability of a VEI≤1, VEI 2, VEI 3, VEI 4, and VEI≥5 eruption at Melimoyu is 4.82 × 10−4, 1.2 × 10−3, 1.45 × 10−4, 9.77 × 10−4, and 8.3 × 10−4 (50th percentile), respectively. Our work shows the importance of using numerical variables to capture the variability across volcanoes and combining quantitative approaches with expert knowledge to assess the suitability of potential analogues. Additionally, this approach allows identifying groups of analogues and can be easily applied to other cases using numerical variables from the global database. Future work will use the analogues to populate an event tree and define eruption source parameters for modelling volcanic hazards at Melimoyu

    A revised age of ad 667–699 for the latest major eruption at Rabaul

    Get PDF
    The most recent major eruption at Rabaul was one of the largest known events at this complex system, having a VEI rating of 6. The eruption generated widespread airfall pumice lapilli and ash deposits and ignimbrites of different types. The total volume of pyroclastic material produced in the eruption exceeded 11 km3 and led to a new phase of collapse within Rabaul Caldera. Initial 14C dating of the eruptive products yielded an age of about 1400 yrs BP, and the eruption became known as the "1400 BP" eruption. Previous analyses of the timing of the eruption have linked it to events in AD 536 and AD 639. However, we have re-evaluated the age of the eruption using the Bayesian wiggle-match radiocarbon dating method, and the eruption is now thought tohave occurred in the interval AD 667-699. The only significant equatorial eruptions recorded in both Greenland and Antarctic ice during this interval are at AD 681 and AD 684, dates that coincide with frost rings in bristlecone pines of western USA in the same years. Definitively linking the Rabaul eruption to this narrow age range will require identification of Rabaul tephra in the ice records. However, it is proposed that a new working hypothesis for the timing of the most recent major eruption at Rabaul is that it occurred in the interval AD 681-684

    The Charmed Circle: Mobility, Identity and Memory around Mount Mayon (Philippines) and Gunung Awu (Indonesia) Volcanoes

    Get PDF
    Volcanoes are surrounded by villages, towns, and polities that are constantly shifting location to benefit from the rich soils generated in the aftermath of eruptions, while, at the same time, avoiding the worst of their destructive potential. We explore the attraction of volcanoes in a Southeast Asian context through a comparative examination of the communities surrounding Mount Mayon in the Bicol peninsula of the Philippines and Gunung Awu on the island of Sangihe Besar in Indonesia. These volcanoes influence the location of settlements, forms of community identity, and the expression of cultural memories. We argue that risk awareness programmes that disregard the extent to which a volcano is embedded within the physical and mental fabric of a society and fail to connect to local historical cultural memory are likely to have little lasting effect on reducing people’s vulnerability
    corecore