54 research outputs found

    Poly(A)+ RNAs roam the cell nucleus and pass through speckle domains in transcriptionally active and inactive cells

    Get PDF
    Many of the protein factors that play a role in nuclear export of mRNAs have been identified, but still little is known about how mRNAs are transported through the cell nucleus and which nuclear compartments are involved in mRNA transport. Using fluorescent 2'O-methyl oligoribonucleotide probes, we investigated the mobility of poly(A)+ RNA in the nucleoplasm and in nuclear speckles of U2OS cells. Quantitative analysis of diffusion using photobleaching techniques revealed that the majority of poly(A)+ RNA move throughout the nucleus, including in and out of speckles (also called SC-35 domains), which are enriched for splicing factors. Interestingly, in the presence of the transcription inhibitor 5,6-dichloro-1-β-d-ribofuranosylbenzimidazole, the association of poly(A)+ RNA with speckles remained dynamic. Our results show that RNA movement is energy dependent and that the proportion of nuclear poly(A)+ RNA that resides in speckles is a dynamic population that transiently interacts with speckles independent of the transcriptional status of the cell. Rather than the poly(A)+ RNA within speckles serving a stable structural role, our findings support the suggestion of a more active role of these regions in nuclear RNA metabolism and/or transport

    LION/web:a web-based ontology enrichment tool for lipidomic data analysis

    Get PDF
    Background: A major challenge for lipidomic analyses is the handling of the large amounts of data and the translation of results to interpret the involvement of lipids in biological systems. Results: We built a new lipid ontology (LION) that associates &gt; 50,000 lipid species to biophysical, chemical, and cell biological features. By making use of enrichment algorithms, we used LION to develop a web-based interface (LION/web, www.lipidontology.com) that allows identification of lipid-associated terms in lipidomes. LION/web was validated by analyzing a lipidomic dataset derived from well-characterized sub-cellular fractions of RAW 264.7 macrophages. Comparison of isolated plasma membranes with the microsomal fraction showed a significant enrichment of relevant LION-terms including "plasma membrane", "headgroup with negative charge", "glycerophosphoserines", "above average bilayer thickness", and "below average lateral diffusion". A second validation was performed by analyzing the membrane fluidity of Chinese hamster ovary cells incubated with arachidonic acid. An increase in membrane fluidity was observed both experimentally by using pyrene decanoic acid and by using LION/web, showing significant enrichment of terms associated with high membrane fluidity ("above average", "very high", and "high lateral diffusion" and "below average transition temperature"). Conclusions: The results demonstrate the functionality of LION/web, which is freely accessible in a platform-independent way.</p

    A glue for heterochromatin maintenance: stable SUV39H1 binding to heterochromatin is reinforced by the SET domain

    Get PDF
    Trimethylation of histone H3 lysine 9 and the subsequent binding of heterochromatin protein 1 (HP1) mediate the formation and maintenance of pericentromeric heterochromatin. Trimethylation of H3K9 is governed by the histone methyltransferase SUV39H1. Recent studies of HP1 dynamics revealed that HP1 is not a stable component of heterochromatin but is highly mobile (Cheutin, T., A.J. McNairn, T. Jenuwein, D.M. Gilbert, P.B. Singh, and T. Misteli. 2003. Science. 299:721–725; Festenstein, R., S.N. Pagakis, K. Hiragami, D. Lyon, A. Verreault, B. Sekkali, and D. Kioussis. 2003. Science. 299:719–721). Because the mechanism by which SUV39H1 is recruited to and interacts with heterochromatin is unknown, we studied the dynamic properties of SUV39H1 in living cells by using fluorescence recovery after photobleaching and fluorescence resonance energy transfer. Our results show that a substantial population of SUV39H1 is immobile at pericentromeric heterochromatin, suggesting that, in addition to its catalytic activity, SUV39H1 may also play a structural role at pericentromeric regions. Analysis of SUV39H1 deletion mutants indicated that the SET domain mediates this stable binding. Furthermore, our data suggest that the recruitment of SUV39H1 to heterochromatin is at least partly independent from that of HP1 and that HP1 transiently interacts with SUV39H1 at heterochromatin

    Changes in supportive care needs over time from diagnosis up to two years after treatment in head and neck cancer patients:A prospective cohort study

    Get PDF
    Objectives: To investigate changes in supportive care needs (SCNs) over time from diagnosis up to 2 years after treatment among head and neck cancer (HNC) patients, in relation to demographic, personal, clinical, psychological, physical, social, lifestyle, and cancer-related quality of life factors.Materials and methods: Data of the longitudinal NETherlands QUality of Life and Biomedical Cohort study (NET-QUBIC) was used. SCNs were measured using the Supportive Care Needs Survey (SCNS-SF34) and HNC-specific module (SCNS–HNC) before treatment, three, six, 12 and 24 months after treatment. Linear mixed model analyses were used to study SCNs on the physical &amp; daily living (PDL), psychological (PSY), sexuality (SEX), health system, information and patient support (HSIPS), HNC-functioning (HNC-Function), and lifestyle (HNC-Lifestyle) domain, in relation to demographic, personal, clinical, psychological, physical, social, lifestyle, and cancer-related symptoms as measured at baseline.Results: In total, 563 patients were included. SCNs changed significantly over time. At baseline, 65% had ≥1 moderate/high SCN, versus 42.8% at 24 months. Changes in PDL needs were associated with gender, tumor location, smoking, fear of cancer recurrence, oral pain, and appetite loss, changes in PSY with tumor location, fear of recurrence, social support, emotional functioning, physical functioning, coughing, and use of painkillers, changes in SEX with treatment, changes in HSIPS with muscle strength, changes in HNC-Function with tumor stage, location, social support, physical functioning, fatigue, nausea and vomiting, and speech problems, and changes in HNC-Lifestyle with smoking and alcohol use.Conclusion: SCNs diminish over time, but remain prevalent in HNC patients.</p

    SUN1/2 are essential for RhoA/ROCK-regulated actomyosin activity in isolated vascular smooth muscle cells

    Get PDF
    Vascular smooth muscle cells (VSMCs) are the predominant cell type in the blood vessel wall. Changes in VSMC actomyosin activity and morphology are prevalent in cardiovascular disease. The actin cytoskeleton actively defines cellular shape and the LInker of Nucleoskeleton and Cytoskeleton (LINC) complex, comprised of nesprin and the Sad1p, UNC-84 (SUN)-domain family members SUN1/2, has emerged as a key regulator of actin cytoskeletal organisation. Although SUN1 and SUN2 function is partially redundant, they possess specific functions and LINC complex composition is tailored for cell-type-specific functions. We investigated the importance of SUN1 and SUN2 in regulating actomyosin activity and cell morphology in VSMCs. We demonstrate that siRNA-mediated depletion of either SUN1 or SUN2 altered VSMC spreading and impaired actomyosin activity and RhoA activity. Importantly, these findings were recapitulated using aortic VSMCs isolated from wild-type and SUN2 knockout (SUN2 KO) mice. Inhibition of actomyosin activity, using the rho-associated, coiled-coil-containing protein kinase1/2 (ROCK1/2) inhibitor Y27632 or blebbistatin, reduced SUN2 mobility in the nuclear envelope and decreased the association between SUN2 and lamin A, confirming that SUN2 dynamics and interactions are influenced by actomyosin activity. We propose that the LINC complex exists in a mechanical feedback circuit with RhoA to regulate VSMC actomyosin activity and morphology

    Nox4 regulates InsP3 receptor‐dependent Ca2+ release into mitochondria to promote cell survival

    Get PDF
    Cells subjected to environmental stresses undergo regulated cell death (RCD) when homeostatic programs fail to maintain viability. A major mechanism of RCD is the excessive calcium loading of mitochondria and consequent triggering of the mitochondrial permeability transition (mPT), which is especially important in post-mitotic cells such as cardiomyocytes and neurons. Here, we show that stress-induced upregulation of the ROS-generating protein Nox4 at the ER-mitochondria contact sites (MAMs) is a pro-survival mechanism that inhibits calcium transfer through InsP 3 receptors (InsP 3R). Nox4 mediates redox signaling at the MAM of stressed cells to augment Akt-dependent phosphorylation of InsP 3R, thereby inhibiting calcium flux and mPT-dependent necrosis. In hearts subjected to ischemia–reperfusion, Nox4 limits infarct size through this mechanism. These results uncover a hitherto unrecognized stress pathway, whereby a ROS-generating protein mediates pro-survival effects through spatially confined signaling at the MAM to regulate ER to mitochondria calcium flux and triggering of the mPT. </p

    Inhibition of polyploidization in Pten-deficient livers reduces steatosis

    Get PDF
    The tumour suppressor PTEN is a negative regulator of the PI3K/AKT signalling pathway. Liver-specific deletion of Pten in mice results in the hyper-activation PI3K/AKT signalling accompanied by enhanced genome duplication (polyploidization), marked lipid accumulation (steatosis) and formation of hepatocellular carcinomas. However, it is unknown whether polyploidization in this model has an impact on the development of steatosis and the progression towards liver cancer. Here, we used a liver-specific conditional knockout approach to delete Pten in combination with deletion of E2f7/8, known key inducers of polyploidization. As expected, Pten deletion caused severe steatosis and liver tumours accompanied by enhanced polyploidization. Additional deletion of E2f7/8 inhibited polyploidization, alleviated Pten-induced steatosis without affecting lipid species composition and accelerated liver tumour progression. Global transcriptomic analysis showed that inhibition of polyploidization in Pten-deficient livers resulted in reduced expression of genes involved in energy metabolism, including PPAR-gamma signalling. However, we find no evidence that deregulated genes in Pten-deficient livers are direct transcriptional targets of E2F7/8, supporting that reduction in steatosis and progression towards liver cancer are likely consequences of inhibiting polyploidization. Lastly, flow cytometry and image analysis on isolated primary wildtype mouse hepatocytes provided further support that polyploid cells can accumulate more lipid droplets than diploid hepatocytes. Collectively, we show that polyploidization promotes steatosis and function as an important barrier against liver tumour progression in Pten-deficient livers.</p

    Inhibition of polyploidization in Pten-deficient livers reduces steatosis

    Get PDF
    The tumour suppressor PTEN is a negative regulator of the PI3K/AKT signalling pathway. Liver-specific deletion of Pten in mice results in the hyper-activation PI3K/AKT signalling accompanied by enhanced genome duplication (polyploidization), marked lipid accumulation (steatosis) and formation of hepatocellular carcinomas. However, it is unknown whether polyploidization in this model has an impact on the development of steatosis and the progression towards liver cancer. Here, we used a liver-specific conditional knockout approach to delete Pten in combination with deletion of E2f7/8, known key inducers of polyploidization. As expected, Pten deletion caused severe steatosis and liver tumours accompanied by enhanced polyploidization. Additional deletion of E2f7/8 inhibited polyploidization, alleviated Pten-induced steatosis without affecting lipid species composition and accelerated liver tumour progression. Global transcriptomic analysis showed that inhibition of polyploidization in Pten-deficient livers resulted in reduced expression of genes involved in energy metabolism, including PPAR-gamma signalling. However, we find no evidence that deregulated genes in Pten-deficient livers are direct transcriptional targets of E2F7/8, supporting that reduction in steatosis and progression towards liver cancer are likely consequences of inhibiting polyploidization. Lastly, flow cytometry and image analysis on isolated primary wildtype mouse hepatocytes provided further support that polyploid cells can accumulate more lipid droplets than diploid hepatocytes. Collectively, we show that polyploidization promotes steatosis and function as an important barrier against liver tumour progression in Pten-deficient livers

    Targeted redox inhibition of protein phosphatase 1 by Nox4 regulates eIF2a-mediated stress signaling

    Get PDF
    Source: doi: 10.15252/embj.201592394Phosphorylation of translation initiation factor 2α (eIF2α) attenuates global protein synthesis but enhances translation of activating transcription factor 4 (ATF4) and is a crucial evolutionarily conserved adaptive pathway during cellular stresses. The serine–threonine protein phosphatase 1 (PP1) deactivates this pathway whereas prolonging eIF2α phosphorylation enhances cell survival. Here, we show that the reactive oxygen species‐generating NADPH oxidase‐4 (Nox4) is induced downstream of ATF4, binds to a PP1‐targeting subunit GADD34 at the endoplasmic reticulum, and inhibits PP1 activity to increase eIF2α phosphorylation and ATF4 levels. Other PP1 targets distant from the endoplasmic reticulum are unaffected, indicating a spatially confined inhibition of the phosphatase. PP1 inhibition involves metal center oxidation rather than the thiol oxidation that underlies redox inhibition of protein tyrosine phosphatases. We show that this Nox4‐regulated pathway robustly enhances cell survival and has a physiologic role in heart ischemia–reperfusion and acute kidney injury. This work uncovers a novel redox signaling pathway, involving Nox4–GADD34 interaction and a targeted oxidative inactivation of the PP1 metal center, that sustains eIF2α phosphorylation to protect tissues under stress

    Inhibition of polyploidization in Pten-deficient livers reduces steatosis

    Get PDF
    The tumour suppressor PTEN is a negative regulator of the PI3K/AKT signalling pathway. Liver-specific deletion of Pten in mice results in the hyper-activation PI3K/AKT signalling accompanied by enhanced genome duplication (polyploidization), marked lipid accumulation (steatosis) and formation of hepatocellular carcinomas. However, it is unknown whether polyploidization in this model has an impact on the development of steatosis and the progression towards liver cancer. Here, we used a liver-specific conditional knockout approach to delete Pten in combination with deletion of E2f7/8, known key inducers of polyploidization. As expected, Pten deletion caused severe steatosis and liver tumours accompanied by enhanced polyploidization. Additional deletion of E2f7/8 inhibited polyploidization, alleviated Pten-induced steatosis without affecting lipid species composition and accelerated liver tumour progression. Global transcriptomic analysis showed that inhibition of polyploidization in Pten-deficient livers resulted in reduced expression of genes involved in energy metabolism, including PPAR-gamma signalling. However, we find no evidence that deregulated genes in Pten-deficient livers are direct transcriptional targets of E2F7/8, supporting that reduction in steatosis and progression towards liver cancer are likely consequences of inhibiting polyploidization. Lastly, flow cytometry and image analysis on isolated primary wildtype mouse hepatocytes provided further support that polyploid cells can accumulate more lipid droplets than diploid hepatocytes. Collectively, we show that polyploidization promotes steatosis and function as an important barrier against liver tumour progression in Pten-deficient livers
    corecore