105 research outputs found

    Processing and Weathering of Sol-Gel Clearcoats for Coil-Coated Steel

    Get PDF
    Clearcoats provide long-term aesthetics and protection for underlying coating systems, increasing product lifetimes. However, organic clearcoats are predominantly produced using fossil-fuel feedstocks. In search of a sustainable alternative, an experimental investigation was conducted on the development of glass-like clearcoats produced using the sol-gel process. The processing of sol-gel clearcoats over a pigmented polyurethane coating was studied by modifying the sol-gel solution pH, aging, curing, precursor chemistry, and deposition techniques. Under optimal formulation and processing conditions, defect-free sol-gel clearcoats were produced that have potential to be scaled up to a coil-coating line using existing technologies. Mechanical testing demonstrated the coatings had excellent adhesion, hardness, and flexibility. Furthermore, accelerated laboratory weathering tests revealed the sol-gel coatings had superior degradation resistance compared to the organic coatings tested, resulting in negligible colour changes and higher gloss retention after 4000 hours of exposure. The durability and environmental benefits of sol-gel clearcoats highlight their potential as a replacement for traditional organic clearcoats in a variety of applications

    The RNA Ontology (RNAO): An ontology for integrating RNA sequence and structure data

    Get PDF
    Biomedical Ontologies are intended to integrate diverse biomedical data to enable intelligent data-mining and facilitate translation of basic research into useful clinical knowledge. We present the first version of RNAO, an ontology for integrating RNA 3D structural, biochemical and sequence data. While each 3D data file depicts the structure of a specific molecule, such data have broader significance as representatives of classes of homologous molecules, which, while differing in sequence, generally share core structural features of functional importance. Thus, 3D structure data gain value by being linked to homologous sequences in genomic data and databases of sequence alignments. Likewise genomic data can increase in value by annotation of shared structural features, especially when these can be linked to specific functions. The RNAO is being developed in line with the developing standards of the Open Biomedical Ontologies (OBO) Consortium

    Understanding selectivity in radio frequency and microwave sorting of porphyry copper ores

    Get PDF
    Continuous high-throughput microwave treatment followed by infrared thermal imaging (MW-IR) has previously been shown to provide attractive separations for a number of porphyry copper ores, leading to rejection of a large proportion of barren fragments from ore-grade material or concentration of copper values from waste-grade material. However, the efficacy of the sorting process is reduced by the presence of hydrated clays and pyrite. Literature measurements have shown differences in the conductivity of pyrite and copper sulphides such as chalcopyrite at radio frequencies. In this work the potential of using radio frequency (RF) heating to exploit these differences and achieve improved selectivity between copper and iron sulphides, is investigated. For the first time a novel bulk materials handling and presentation method that facilitates even heating of angular ore fragments in parallel plate RF systems is discussed. The fragment-by-fragment thermal response of five ore samples under equivalent pilot MW-IR and RF-IR processing conditions is evaluated, showing that there is an increase in selectivity in the heating of hydrated clay minerals in RF compared to microwave. It is suggested, again for the first time, that selectivity in the microwave processing of ores containing semi-conducting minerals is due predominantly to magnetic absorption (induction heating) caused by eddy currents associated with the magnetic field component of electromagnetic energy. In radio frequency processing, where electric field is the dominant component, heating of semi-conducting minerals is limited by the electric field screening effect. This effect is demonstrated using synthetic fragments. Thermal response profiles of synthetic fragments show that approximately 2.5 times the mass of sulphide minerals to hydrated clay minerals would result in an equal temperature increase for microwave heated fragments in which the microwave-heating minerals are evenly disseminated throughout the matrix. This understanding provides the foundations for development of models incorporating different thermal responses for individual heated phases, alongside other textural and treatment variables, that can be used to predict how close to intrinsic sortability ores will perform in MW-IR and RF-IR without the need for extensive processing trials

    Development of collector well gardens

    Get PDF
    Communal areas of southern Zimbabwe illustrate the problems now facing people and the environment in many semi-arid parts of Africa. Prime constraints on sustainable development are the low and erratic rainfall and the limited availability of ground and surface water resources. Rainfed crop production provides the main source of staple foodstuffs. However, increasing population densities, all too frequent droughts and declining productivity of existing croplands have led to cultivation of more marginal terrain which is better suited to other, less intensive forms of land use. In areas where sufficient water resources are available, large irrigation schemes have been constructed. However, such schemes have been beset by a wide range of technical, institutional and social problems. It has also been difficult to reconcile such schemes with traditional farming practices. In contrast, experience in the region has shown that informal or garden irrigation can be economically viable and appropriate to households, especially for women farmers, for whom it is already a traditional component of the farming system. In 1988, a programme of research was started in southern Zimbabwe, the main objectives of which were to study the feasibility of using shallow crystalline basement aquifers as a source of water for small-scale irrigation and to compare and develop methods of low-cost, high efficiency irrigation which would be suitable for use on small irrigated gardens. This paper gives a brief description of some elements of this programme. More information can be found in Lovell et al (1996) and Murata et al (1995)

    A tool for predicting heating uniformity in industrial radio frequency processing

    Get PDF
    Radio frequency energy is utilised for heating in a wide range of applications, particularly in the food industry. A major challenge of RF processing is non-uniform heating in loads of variable and angular geometry, leading to reduced quality and product damage. In the study, the specific effects of geometry on the heating profiles of a range of geometrically variable loads in an industrial scale RF system are analysed, and the understanding used to derive a general tool to predict heating uniformity. Potato was selected as a test material for experimental work; dielectric properties were measured using a 44mm coaxial probe. Analysis of simulated and experimental surface temperature profiles and simulated power uniformity indices indicates that the presence of vertices and edges on angular particles, and their proximity to faces perpendicular to the RF electrodes increases localised heating; faces parallel to the electrodes heated less than those faces perpendicular to them. Comparison of the same geometrical shape in different orientations indicates that overall power absorption uniformity can be better even when localised heating of edges is greater. It is suggested, for the first time, that the rotation of angular shapes within a parallel plate electric field can improve heating uniformity, and that this can be achieved through the design of bespoke electrode systems. A Euler characteristic based shape factor is proposed, again for the first time, that can predict heating uniformity for solid, dielectrically homogenous shapes. This provides industry with a tool to quickly determine the feasibility for uniform RF heating of different three dimensional shapes based on geometry alone. This provides a screening method for food technologists developing new products, allowing rapid assessment of potential heating uniformity and reducing the need for early stage specialist computational modelling

    Gravity Waves on Hot Extrasolar Planets: I. Propagation and Interaction with the Background

    Full text link
    We study the effects of gravity waves, or g-modes, on hot extrasolar planets. These planets are expected to possess stably-stratified atmospheres, which support gravity waves. In this paper, we review the derivation of the equation that governs the linear dynamics of gravity waves and describe its application to a hot extrasolar planet, using HD209458 b as a generic example. We find that gravity waves can exhibit a wide range of behaviors, even for a single atmospheric profile. The waves can significantly accelerate or decelerate the background mean flow, depending on the difference between the wave phase and mean flow speeds. In addition, the waves can provide significant heating (~100 to ~1000 K per planetary rotation), especially to the region of the atmosphere above about 10 scale heights from the excitation region. Furthermore, by propagating horizontally, gravity waves provide a mechanism for transporting momentum and heat from the dayside of a tidally locked planet to its nightside. We discuss work that needs to be undertaken to incorporate these effects in current atmosphere models of extrasolar planets.Comment: Accepted for publication in the Astrophysical Journal; 11 pages, 10 figures

    Towards large scale microwave treatment of ores: Part 1 – Basis of design, construction and commissioning

    Get PDF
    Despite over thirty years of work, microwave pre-treatment processes for beneficiation of ores have not progressed much further than laboratory testing. In this paper we present a scaleable pilot-scale system for the microwave treatment of ores capable of operating at throughputs of up to 150tph. This has been achieved by confining the electric field produced from two 100kW generators operating at 896MHz in a gravity fed vertical flow system using circular choking structures yielding power densities of at least 6x108 W/m3 in the heated mineral phases. Measured S11 scattering parameters for a quartzite ore (-3.69±0.4dB) in the as-built applicator correlated well with the simulation (-3.25dB), thereby validating our design approach. We then show that by fully integrating the applicator with a materials handling system based on the concept of mass flow, we achieve a reliable, continuous process. The system was used to treat a range of porphyry copper ores

    Towards large scale microwave treatment of ores: Part 2 - Metallurgical testing

    Get PDF
    A pilot scale microwave treatment system capable of treating 10-150t/h of material at 10-200kW was designed, constructed and commissioned in order to understand the engineering challenges of microwave-induced fracture of ores at scale and generate large metallurgical test samples of material treated at approximately 0.3-3kWh/t. It was demonstrated that exposing more of the ore to a region of high power density by improving treatment homogeneity with two single mode applicators in series yielded equivalent or better metallurgical performance with up to half the power and one third the energy requirement of that used with a single applicator. Comminution testing indicated that A*b values may be reduced by up to 7-14% and that the Bond Ball Mill Work Index may be reduced by up to 3-9% depending on the ore type under investigation. Liberation analysis of the microwave-treated ore indicated that equivalent liberation may be achievable for a grind size approximately 40-70µm coarser than untreated ore, which is in agreement with laboratory scale investigations reported in the literature at similar or higher doses. Flow sheet simulations further indicated that reduced ore competency following microwave treatment could potentially yield up to a 9% reduction in specific comminution energy (ECS) at a nominal plant grind of P₈₀190µm, or up to 24% reduction at a grind of P₈₀290µm, for a microwave energy input of 0.7-1.3kWh/t. Throughput could also be increased by up to approximately 30% depending on grind size, ore type and equipment constraints. To date, approximately 900t of material has been processed through the pilot plant, approximately 300t of which was under microwave power. Metallurgical testing has demonstrated that comminution and liberation benefits are achievable at doses lower than that previously reported in the literature, which allow high throughputs to be sustained with low installed power requirements providing a pathway to further scale-up of microwave treatment of ores

    Microwave digestion of gibbsite and bauxite in sodium hydroxide

    Get PDF
    It was hypothesized that bauxite digestion may be improved by using microwave heating as it has been shown in literature that some material processes have improved efficiency. To test this hypothesis, a set of digestion experiments were conducted using gibbsite, one of the major minerals in bauxite. Gibbsite was digested at various temperatures (50, 75, and 95 °C) in either 1 M or 6 M sodium hydroxide solutions for 30 min using either a convection oven or a 2.45 GHz microwave applicator. Results show that microwave heating provided an increase of 5–7% in the digestion after 30 min and required around 1/10th the time to heat the solutions compared to conventional heating. Electromagnetic simulations show that preferential heating occurs at the solution surface creating a temperature gradient within the solution. Although vigorous stirring of the solution was used to minimize the temperature gradient, it could still be responsible for the observed difference in digestion. Digestion of bauxite itself yielded similar results to the gibbsite
    • …
    corecore