13,729 research outputs found
Lambda hyperonic effect on the normal driplines
A generalized mass formula is used to calculate the neutron and proton drip
lines of normal and lambda hypernuclei treating non-strange and strange nuclei
on the same footing. Calculations suggest existence of several bound
hypernuclei whose normal cores are unbound. Addition of Lambda or,
Lambda-Lambda hyperon(s) to a normal nucleus is found to cause shifts of the
neutron and proton driplines from their conventional limits.Comment: 6 pages, 4 tables, 0 figur
Tax evasion dynamics and Zaklan model on Opinion-dependent Network
Within the context of agent-based Monte-Carlo simulations, we study the
well-known majority-vote model (MVM) with noise applied to tax evasion on
Stauffer-Hohnisch-Pittnauer (SHP) networks. To control the fluctuations for tax
evasion in the economics model proposed by Zaklan, MVM is applied in the
neighborhood of the critical noise to evolve the Zaklan model. The
Zaklan model had been studied recently using the equilibrium Ising model. Here
we show that the Zaklan model is robust because this can be studied besides
using equilibrium dynamics of Ising model also through the nonequilibrium MVM
and on various topologies giving the same behavior regardless of dynamic or
topology used here.Comment: 14 page, 4 figure
Collective traffic-like movement of ants on a trail: dynamical phases and phase transitions
The traffic-like collective movement of ants on a trail can be described by a
stochastic cellular automaton model. We have earlier investigated its unusual
flow-density relation by using various mean field approximations and computer
simulations. In this paper, we study the model following an alternative
approach based on the analogy with the zero range process, which is one of the
few known exactly solvable stochastic dynamical models. We show that our theory
can quantitatively account for the unusual non-monotonic dependence of the
average speed of the ants on their density for finite lattices with periodic
boundary conditions. Moreover, we argue that the model exhibits a continuous
phase transition at the critial density only in a limiting case. Furthermore,
we investigate the phase diagram of the model by replacing the periodic
boundary conditions by open boundary conditions.Comment: 8 pages, 6 figure
Distribution of dwell times of a ribosome: effects of infidelity, kinetic proofreading and ribosome crowding
Ribosome is a molecular machine that polymerizes a protein where the sequence
of the amino acid residues, the monomers of the protein, is dictated by the
sequence of codons (triplets of nucleotides) on a messenger RNA (mRNA) that
serves as the template. The ribosome is a molecular motor that utilizes the
template mRNA strand also as the track. Thus, in each step the ribosome moves
forward by one codon and, simultaneously, elongates the protein by one amino
acid. We present a theoretical model that captures most of the main steps in
the mechano-chemical cycle of a ribosome. The stochastic movement of the
ribosome consists of an alternating sequence of pause and translocation; the
sum of the durations of a pause and the following translocation is the time of
dwell of the ribosome at the corresponding codon. We derive the analytical
expression for the distribution of the dwell times of a ribosome in our model.
Whereever experimental data are available, our theoretical predictions are
consistent with those results. We suggest appropriate experiments to test the
new predictions of our model, particularly, the effects of the quality control
mechanism of the ribosome and that of their crowding on the mRNA track.Comment: This is an author-created, un-copyedited version of an article
accepted for publication in Physical Biology. IOP Publishing Ltd is not
responsible for any errors or omissions in this version of the manuscript or
any version derived from it. The definitive publisher authenticated version
is available online at DOI:10.1088/1478-3975/8/2/02600
Ultra-fast sampling of terahertz pulses from a quantum cascade laser using superconducting antenna-coupled NbN and YBCO detectors
We demonstrate the ultra-fast detection of terahertz pulses from a quantum cascade laser (QCL) using superconducting NbN and YBCO detectors. This has enabled both the intrapulse and interpulse dynamics of a THz QCL to be measured directly, including interpulse heating effects on sub-μs timescales
- …