11,937 research outputs found

    Time-resolved measurement of single pulse femtosecond laser-induced periodic surface structure formation

    Full text link
    Time-resolved diffraction microscopy technique has been used to observe the formation of laser-induced periodic surface structures (LIPSS) from the interaction of a single femtosecond laser pulse (pump) with a nano-scale groove mechanically formed on a single-crystal Cu substrate. The interaction dynamics (0-1200 ps) was captured by diffracting a time-delayed, frequency-doubled pulse from nascent LIPSS formation induced by the pump with an infinity-conjugate microscopy setup. The LIPSS ripples are observed to form sequentially outward from the groove edge, with the first one forming after 50 ps. A 1-D analytical model of electron heating and surface plasmon polariton (SPP) excitation induced by the interaction of incoming laser pulse with the groove edge qualitatively explains the time-evloution of LIPSS formation.Comment: 4 pages, 5 figure

    Dynamic instability of microtubules: effect of catastrophe-suppressing drugs

    Get PDF
    Microtubules are stiff filamentary proteins that constitute an important component of the cytoskeleton of cells. These are known to exhibit a dynamic instability. A steadily growing microtubule can suddenly start depolymerizing very rapidly; this phenomenon is known as ``catastrophe''. However, often a shrinking microtubule is ``rescued'' and starts polymerizing again. Here we develope a model for the polymerization-depolymerization dynamics of microtubules in the presence of {\it catastrophe-suppressing drugs}. Solving the dynamical equations in the steady-state, we derive exact analytical expressions for the length distributions of the microtubules tipped with drug-bound tubulin subunits as well as those of the microtubules, in the growing and shrinking phases, tipped with drug-free pure tubulin subunits. We also examine the stability of the steady-state solutions.Comment: Minor corrections; final published versio

    Comprehensive Approach of Groundwater Resource Evaluation: A Case Study in the Chippewa Creek Watershed in Ohio

    Get PDF
    Author Institution: Department of Geological Sciences, State University of New York - New Paltz ; Department of Earth Science, University of Northern Iowa ; Department of Geology, University of AkronA groundwater resource evaluation of Chippewa Creek watershed in Wayne and Medina counties, OH, shows continued availability of groundwater for agriculture and domestic uses. Two major hydrogeologic units in this watershed supply groundwater. A 100 to 150 ft (30 to 46 m) thick outwash deposit of sand and gravel, occupying a buried valley underlying Chippewa Creek, forms a highly permeable aquifer for agricultural, municipal, and domestic purposes. In some areas bedrock aquifers, mostly composed of sandstone of Pennsylvanian and Mississippian age, are used for industrial and domestic purposes. Mean transmissivity of the outwash aquifer is 25,000 gpd/ft (310 mVday). The hydraulic conductivity of the aquifer has a mean value of 250 gpd/ft2 (10 m/day). The total calculated volume of annual net recharge is 4.2 x 108 ft3 (1.2 107 m3) and the mean specific capacity of the wells completed in aquifer is 5.0 gpm/ft (1.03 1/sec/m). The groundwater quality is suitable for drinking and agricultural use and contains mostly Ca++, Na+, K+ and HCO3~ ions. Groundwater pollution potential of the study area was evaluated using DRASTIC. Chippewa Creek watershed lies within the Glaciated Central Ground Water Region. Seven mappable units from DRASTIC were defined in the study area based on seven hydrogeologic settings. The units are: 1) 7Aa, glacial till over bedded sedimentary rocks (DRASTIC designation); 2) 7Ad, glacial till over sandstone; 3) 7Af, sand and gravel interbedded in glacial till; 4) 7Ba, outwash; 5) 7D, buried valley; 6) 7Eb, alluvium without overbank deposits; 7) 7Ec, alluvium over bedded sedimentary rocks. The outwash aquifer has a moderate to high pollution potential and the underlying sandstone and shale deposits show relatively low pollution potentials. The alluvium in valleys exhibits moderately high susceptibility to contamination

    Logarithmic Correction to BPS Black Hole Entropy from Supersymmetric Index at Finite Temperature

    Full text link
    It has been argued by Iliesiu, Kologlu and Turiaci in arXiv:2107.09062 that one can compute the supersymmetric index of black holes using black hole geometry carrying finite temperature but a specific complex angular velocity. We follow their prescription to compute the logarithmic correction to the entropy of BPS states in four dimensions, defined as the log of the index of supersymmetric black holes, and find perfect agreement with the previous results for the same quantity computed using the near horizon AdS2×S2AdS_2 \times S^2 geometry of zero temperature black holes. Besides giving an independent computation of supersymmetric black hole entropy, this analysis also provides a test of the procedure used previously for computing logarithmic corrections to Schwarzschild and other non-extremal black hole entropy.Comment: 23 page

    The consequences of SU(3) colorsingletness, Polyakov Loop and Z(3) symmetry on a quark-gluon gas

    Full text link
    Based on quantum statistical mechanics we show that the SU(3)SU(3) color singlet ensemble of a quark-gluon gas exhibits a Z(3)Z(3) symmetry through the normaized character in fundamental representation and also becomes equivalent, within a stationary point approximation, to the ensemble given by Polyakov Loop. Also Polyakov Loop gauge potential is obtained by considering spatial gluons along with the invariant Haar measure at each space point. The probability of the normalized character in SU(3)SU(3) vis-a-vis Polyakov Loop is found to be maximum at a particular value exhibiting a strong color correlation. This clearly indicates a transition from a color correlated to uncorrelated phase or vise-versa. When quarks are included to the gauge fields, a metastable state appears in the temperature range 145≀T(MeV)≀170145\le T({\rm{MeV}}) \le 170 due to the explicit Z(3)Z(3) symmetry breaking in the quark-gluon system. Beyond T≄170T\ge 170 MeV the metastable state disappears and stable domains appear. At low temperature a dynamical recombination of ionized Z(3)Z(3) color charges to a color singlet Z(3)Z(3) confined phase is evident along with a confining background that originates due to circulation of two virtual spatial gluons but with conjugate Z(3)Z(3) phases in a closed loop. We also discuss other possible consequences of the center domains in the color deconfined phase at high temperature.Comment: Version published in J. Phys.

    Instability of dilute granular flow on rough slope

    Full text link
    We study numerically the stability of granular flow on a rough slope in collisional flow regime in the two-dimension. We examine the density dependence of the flowing behavior in low density region, and demonstrate that the particle collisions stabilize the flow above a certain density in the parameter region where a single particle shows an accelerated behavior. Within this parameter regime, however, the uniform flow is only metastable and is shown to be unstable against clustering when the particle density is not high enough.Comment: 4 pages, 6 figures, submitted to J. Phys. Soc. Jpn.; Fig. 2 replaced; references added; comments added; misprints correcte

    A (Running) Bolt for New Reasons

    Full text link
    We construct a four-parameter family of smooth, horizonless, stationary solutions of ungauged five-dimensional supergravity by using the four-dimensional Euclidean Schwarzschild metric as a base space and "magnetizing" its bolt. We then generalize this to a five-parameter family based upon the Euclidean Kerr-Taub-Bolt. These "running Bolt" solutions are necessarily non-static. They also have the same charges and mass as a non-extremal black hole with a classically-large horizon area. Moreover, in a certain regime their mass can decrease as their charges increase. The existence of these solutions supports the idea that the singularities of non-extremal black holes are resolved by low-mass modes that correct the singularity of the classical black hole solution on large (horizon-sized) scales.Comment: 25 pages, 3 figures, LaTeX; v2: minor changes, references adde

    Inverse flux quantum periodicity of magnetoresistance oscillations in two-dimensional short-period surface superlattices

    Full text link
    Transport properties of the two-dimensional electron gas (2DEG) are considered in the presence of a perpendicular magnetic field BB and of a {\it weak} two-dimensional (2D) periodic potential modulation in the 2DEG plane. The symmetry of the latter is rectangular or hexagonal. The well-known solution of the corresponding tight-binding equation shows that each Landau level splits into several subbands when a rational number of flux quanta h/eh/e pierces the unit cell and that the corresponding gaps are exponentially small. Assuming the latter are closed due to disorder gives analytical wave functions and simplifies considerably the evaluation of the magnetoresistivity tensor ρΌΜ\rho_{\mu\nu}. The relative phase of the oscillations in ρxx\rho_{xx} and ρyy\rho_{yy} depends on the modulation periods involved. For a 2D modulation with a {\bf short} period ≀100\leq 100 nm, in addition to the Weiss oscillations the collisional contribution to the conductivity and consequently the tensor ρΌΜ\rho_{\mu\nu} show {\it prominent peaks when one flux quantum h/eh/e passes through an integral number of unit cells} in good agreement with recent experiments. For periods 300−400300- 400 nm long used in early experiments, these peaks occur at fields 10-25 times smaller than those of the Weiss oscillations and are not resolved

    On the kinks and dynamical phase transitions of alpha-helix protein chains

    Full text link
    Heuristic insights into a physical picture of Davydov's solitonic model of the one-dimensional protein chain are presented supporting the idea of a non-equilibrium competition between the Davydov phase and a complementary, dynamical- `ferroelectric' phase along the chainComment: small latex file with possible glue problems, just go on !, no figures, small corrections with respect to the published text, follow-up work to cond-mat/9304034 [PRE 47 (June 1993) R3818
    • 

    corecore