268 research outputs found

    Physico-Chemical Analysis of Water at Selected Point in Kota, Rajasthan

    Get PDF
    Water is the basic unit of life and it is essential element for all living forms and the environment health. Water is the basic unit of life and it is essential element for all living forms and the environment health. Rivers are essential for all living organism on earth. In this study, we screened the point of contamination of pollutants in Chambal river water and their concentration in different season.  Present study revealed that water quality parameters (pH, EC, Chloride, Fluoride, TDS, DO, COD, BOD etc) of some sample site showed contamination and depletion in quality of Chambal River in pre monsoon. The water quality was maintained in certain sample site and all parameters were found under limit. We should maintain quality of water because Chambal River is major source of drinking water for districts of Rajasthan. Keywords: Water quality, Chambal River, Chemical paramete

    Fungal Flora of Vermicompost and Organic Manure : A Case Study of Molecular Diversity of Mucor racemosus using RAPD Analysis

    Get PDF
    In the present study seven samples were collected of which four were from vermicompost from Prof. T.S. Murthy Udyan, Obaidullahganj and 3 from organic manure pit of Ambari, Himmatpur & Gwalipur. Mucor racemosus strains were screened for the production of lipase, gelatinase, xylanase, amylase and caseinase enzymes which showed its biodegradable role in composting process. RAPD techniques was used for genetic diversity of Mucor isolated from vermicompost resulted 64.29% as polymorphism the Mucor racemosus indicating higher percentage of homogeneity among them

    A Dynamic Image Analysis Method for Fragmentation Measurement in Blasting

    Get PDF
    188-201Fragment size optimization with selection of best values of blast design variables is an important process in mine-mill fragmentation system to maximize the system performance. This calls for measurement and analysis of mean fragment size with respect to blast design parameters. Digital image analysis technique is the most accepted method for measurement of blasted fragment sizes and their distribution. For quick assessment of the fragment sizes, a new novel method based on the digital images extracted from a blast video is reported in this paper. Correction factor for the size of fragments, considering the face movement is also proposed. The method has been tested with the help of seven blast data sets. The proposed dynamic image analysis technique can not only be used in fragment size estimation but also to assess the time-progressive size reduction in a blast, which can help designing the delay timing. Further, a possibility to estimate the in-situ block size is also explored with this method. The images of blast fragmentation were extracted from their videos at an interval of 0.08 s. These images were analyzed later for measurement of mean fragment size at respective times. The fragment size of the complete muck generated by the blast was also measured and correlated well with the sizes achieved from video analysis. The analysis revealed that from 0.08 s to 0.56 s from the initiation of the blasts, the fragment size reduction progressed from 58% to 80% of the estimated in-situ rock block sizes. Significant effect of blast design variables and two firing patterns on the mean fragment size was also observed. The analysis suggested that V-type firing pattern provides finer fragment size in comparison to the diagonal firing pattern. The suggested method provides an easy yet fast way for the assessment of blast fragment size

    Evaluation of Multiple Salinity Tolerance Indices for Screening and Comparative Biochemical and Molecular Analysis of Pearl Millet [Pennisetum glaucum (L.) R. Br.] Genotypes

    Get PDF
    Salinity is a major constraint for plant growth, development and yield worldwide. Evaluation of a large number of germplasms in salt-stressed environments may help identify superior salt-tolerant genotypes. The present study dissects the genetic diversity of 33 pearl millet genotypes (landraces and inbred lines) for salinity tolerance through in vitro screening at the seedling stage. Our results revealed a significant reduction in total biomass and shoot growth of the salt-sensitive genotypes upon exposure to 150 mM NaCl, in contrast to the tolerant genotypes showing better growth characteristics. A significant differential effect of salt treatment on morphological traits was observed by analysis of variance (ANOVA), confirming substantial genetic diversity among all genotypes for salt tolerance. The genotypes were clustered into three groups based on multiple stress indices. The genotypes were also evaluated using principal component analysis (PCA) to identify the key contributing traits for stress tolerance. Based on these results, a total of four contrasting genotypes were selected for further biochemical and molecular analysis. Physiological studies confirmed that salt tolerance might be due to the higher content of osmolytes and the activity of antioxidant enzymes. Similarly, gene expression profiling of catalase (CAT), glutamate dehydrogenase (GDH), glutathione reductase (GR), and nitrate reductase (NR) revealed a profound increase in NR and GDH transcript levels in the tolerant genotypes, suggesting their major role as reactive oxygen species (ROS) scavengers under salinity. The overall findings of this study could be utilized further for candidate gene mining through “omics” approaches, aiming toward development of salinity resilient crop plants

    Thermodynamics of SmCo5 compound doped with Fe and Ni: An ab initio study

    Get PDF
    SmCo5 permanent magnets exhibit enormous uniaxial magnetocrystalline anisotropy energy and have a high Curie temperature. However, their low energy product is a significant deficiency. To increase the energy product in SmCo5, we propose substituting cobalt with iron, that has a much larger magnetic moment, in a SmCoNiFe3 magnet where nickel is used as a thermodynamic stabilizer

    PVT1 Exon 9: A Potential Biomarker of Aggressive Prostate Cancer?

    Full text link
    Prostate cancer (PCa) is the most commonly diagnosed cancer as well as the greatest source of cancer-related mortality in males of African ancestry (MoAA). Interestingly, this has been shown to be associated with single nucleotide polymorphisms around regions 2 and 3 of the 8q24 human chromosomal region. The non-protein coding gene locus Plasmacytoma Variant Translocation 1 (PVT1) is located at 8q24 and is overexpressed in PCa and, therefore, is also a candidate biomarker to explain the well-known disparity in this group. PVT1 has at least 12 exons that make separate transcripts which may have different functions, all of which are at present unknown in PCa. Our aim was to determine if any PVT1 transcripts play a role in aggressiveness and racial disparity in PCa. We used a panel of seven PCa cell lines including three derived from MoAA. Ribonucleic acid extraction, complementary deoxyribonucleic acid synthesis, and quantitative polymerase chain reaction (qPCR) were performed to evaluate expression of all 12 PVT1 exons. Each qPCR was performed in quadruplicates. At least four separate qPCR experiments were performed. Expression of PVT1 exons was inconsistent except for exon 9. There was no significant difference in exon 9 expression between cell lines derived from Caucasian males (CM), and an indolent cell line derived from MoAA. However, exon 9 expression in the aggressive MDA PCa 2b and E006AA-hT cell lines derived from MoAA was significantly higher than in other cell lines. Consequently, we observed differential expression of exon 9 of PVT1 in a manner that suggests that PVT1 exon 9 may be associated with aggressive PCa in MoAA
    corecore