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Abstract The scif-focusmg problem of nonlinear interaction of intense laser beam with plasma has been analysed considering entire spatial 
characteristics of laser beam Dropping a number of appioximalions like paraxial approximation and Taylor series expansion of dielectric constant 
of plasma, self-focusing and self-trapping of the laser beam m plasma with pondermotive nonlinearity has been discussed Comparision of 
different propagation characteristic parameters like dimensionless beam width scif-focusing parameter, self-trapping beam radius and critical 
power shows a good agreement with moments and varational method The saturation behaviour of equilibrium radius in high intensity region 
shows better results Value of critical power has been calculated without any kind of power senes expansion for the dielectric constant in present 
approach Results of analysis demonstrate the advantages over popular paraxial ray approximation methods
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1. Introduction

An intense laser beam during propagation can modify a 
nonlinear dispersive medium so as to create a path of 
enhanced refractive index [ 1 ]. The wave refracts into this 
path and further enhances the nonlinear processes. This can 
leads to self-similar evolution of laser beam and many 
important phenomena may occur such as self-focusing, self
trapping etc. The recent interest in plasma based particle 
accelerator concepts and related applications [2,3] has 
prompted several investigations of self-focusing of laser 
beam [4-8]. Apart from that, guiding of intense laser beam 
in plasma channels [9 ] is beneficial to various applications, 
including harmonic generation [10], X-ray laser by fiber 
wave guide scheme [ 1 1 , 1 2 ], advance laser fusion scheme 
[13,14] etc. Conventional theories of intense, finite radius 
pulse propagation in plasma have assumed the paraxial 
approximation which is incapable of describing many 
phenomena such as forward Raman scattering [15,16] etc. A

detailed quantitative understanding of self-focusing is still far 
away although lot of work had been done since early 1960's 
[4,5]. A search for effective ways of its analytic description 
is an on going concern.

Phenomena related to ponderomotive self-focusing of 
electromagnetic beam in plasma have been considered in the 
areas of laser driven plasma compression [17], ionospheric 
modification [18] and heating of magnetically confined 
plasma column etc. The effect has been experimentally 
verified using an infra-red laser beam in plasma [19]. 
Theories of self-trapped beams have relied on the paraxial 
ray approximation [20-23] which is known to give a large 
error in the value of the threshold power for self-focusing. 
In view of the possibility that paraxial approximation may 
also be qualitatively in error in the saturation region, some 
alternative methods for the analysis of self-focusing and self
trapping of beam in plasma has been suggested and used by 
various workers [24-28].
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In this paper, we present entire spatial propagation study 
of intense Gaussian laser beam in plasma for self-focusing 
and self-trapping. Only pondcromotive nonlinearity in plasma 
has been considered during the analysis. It is nece.ssary in 
many paraxial analysis involving self-focusing to make some 
kind of power series in transverse coordinates and most of 
it assume to be Taylor series expansion [29 31], that is 
incorrect. We have applied an alternative method and here 
self-focusing and self-trapping analysis based on non-Taylor 
series expansion of dielectric constant of plasma has been 
presented.

In Section 2, we have solved the wave equation for 
electric field in nonlinear medium. Here we have derived the 
beam width parameter differential equation. Equations of 
self-focusing are given, where expansion of the nonlinear 
refractive index is not a faylor series expansion in, radial 
coordinate (r) as usually employed in paraxial theories [32]. 
Conditions for diffractionless propagation and self-trapping 
is presented along with related relations for critical power 
Then in Section 3, we have stated the effective dielectric 
constant of plasma in the presence of intense laser beam when 
its intensity dependence arises because of ponderomotivc 
force. In Section 4, the numerical results of the analysis based 
on the present methodology are summarised.

Finally in the Section 5, brief discussion of the results of 
analysis and their interpretations is given. These results are 
compared with the available results based on paraxial and 
non-paraxial approaches such as moments and variational 
methods. Other related issued are discussed here in this 
section.

2. Basic equation of laser beam in nonlinear medium
During the development of these equations, it is assumed that 
time for the establishment of nonlinearity in the medium as 
well as relaxation time associated with the nonlinearity are 
much smaller than the pulse width so that steady state 
expression of the plasma density and refractive index can be 
used. These assumptions are made throughout so that moving 
focus phenomena [33] are excluded and the nonlinear response 
function of the plasma can bear an algebraic relationship with 
the beam intensity.

2.1. Beam width parameter differential equation for self- 
focusing :
The wave equation governing the electric vector (£) of the 
propagating beam in the nonlinear medium can easily be 
obtained by solving Maxwell's equations and may be written 
as [34]

V ^ £ - 4 - ^  = 0 .

It can in general, be written as

c  ~ t ' i  {< EE* >), (2)
where is linear part of the dielectric constant and is 
nonlinear pari of the dielectric constant of the medium which 
depends on the intensity of the propagating beam.

A general solution ofeq. (1) cannot be obtained. However, 
it is possible to obtain solution corresponding to common 
experimental situation of slowly diverging/converging 
cylindrically symmetric beam which will have a wave-front 
not very different from a plane wave-front.

Thus, for a azimuthally symmetric beam, cq. (1) can be 
written as

\ ^ E

The general solution of eq. (3) can be written as 
E = A(r,z)e\p[i{Kz -  0)1}].

Substituting eq. (4) into eq. (3), one gets

( ^ A  X d A ' ]  d ^ A

O^E ei^E

) c (3)

(4)

A- (5)

But X' -  is propagation constant of the wave and
hence above equation can be rewritten as

.2
(6)-2 /V

c?A 1 M  , 
7̂̂ 2  ̂r dr

0}
dz r j '

This parabolic equation has been extensively employed by 
various workers for propagation and radiation problem [2 2 ]. 

Putting
A{r,z) = Ao{r,z)e\p[-i/cS{r,z)] (7)

in eq. (6 ) and separating real and imaginary parts, one gets

+ ^ + 1 ^ 1 + £ £ L  (8)
k U o r  ^

and
r24n Â̂  dS\ . . d̂ S
az ) V dr J  ̂dr̂   ̂ dr  ̂

Here, S is the plane wave eikonal and A q( t, z )  is the amplitude 
of the envelope.

For a slowly converging/diverging beam, one can assume 
the eikonal to be

(1) also

(10)

Here, c is the effective dielectric constant of medium in the 
presence of the incident beam.

where [>̂ (2)] * represents the radius of curvature of the 
wavefront and ^(z) is an addition to the eikonal due to change
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in the average wave propagation velocity. H e re ,/  a function 
o f  z, is the dimensionless beam w idth parameter, which is 
associated w ith  self-focusing behaviour o f  beam w ithin 
medium while propagating in the z-direction.

Let us consider the in itia l intensity d istribution o f laser 
beam at plasma-vacuum interface (i,e. z = 0) along the radial 
d irection, is o f  Gaussian form  such as

i4 | ( r , z  = 0 )=  £ ^ e x p (II)
The beam is propagating along the z-direction in the nonlinear 
medium and its intensity d istribution in the medium at any 
axial distance z, may be given by

A^{r,z) = ^0
f H z ) (12)

where r ^ flz )  represents the spot size o f  beam at any axial 
distance z.

Using eqs. (8) and (12), one gets

K^r, 4 f A
[) J

g y / ( < £ r  > )
(13)

In paraxial approximation, value o f  eikonal (S) is substituted 
in this equation and nonlinear part o f  d ielectric constant is 
approximated as a power series-usually a Taylor series 
expansion in the transverse cylindrica l coordinate r —  to 
estimate the fie lds near the radial position o f  interest that is 
r  == 0. Finally, r^ terms on both sides o f  equation are 
compared, dropping higher order terms in r  and a d ifferential 
equation fo r beam w idth parameter /  is obtained. This 
method, as o rig ina lly  applied by Akhmanov et al [22] to se lf 
focusing problem and later extended by Sodha et a l [34] and 
M ax [21] fo r saturable nonlinearity, does not provide proper 
results due to accuracy problem [26]. For laser beam in the 
transverse d irection, the plasma density and/or refractive 
index inhomogenety perceived by the wave profile  cannot be 
approximated by paraxial theories, w ithout proper correction. 
This is a reason why the conventional paraxial ray theory fails 
to explain self-focusing properly while  the moments and 
v a ria tio n a l m ethods in tr in s ic a lly  take care o f  these 
approximation.

For the study o f  entire spatial beam self-focusing including 
paraxial as w e ll as pheripheral portion o f  the axia lly  peaked 
laser beam (Gaussian), value o f  eikonal (5) from  eq. (10) is 
substituted in ejq. (13) and w ithout expanding the nonlinear 
d ie lectric constant and dropping higher order term, one 
obtains the equation fo r beam w id th  parameter as

2 1 /  ^NL_______________________
d z \ ~ K W r ^ f  K ^ r $ p  r2

The above equation is the second order dilTcrcntial equation 
for the beam width parameter (/) w ith r and z as variable. It 
defines the propagating beam dynamics and can be used for 
study o f  self-focusing o f the beam w ith arbitrary cross section 
in all types o f  nonlinear medium. In the eq (14), first two 
terms o f  the R.H.S. are responsible for d iffraction divergence 
effect while the last term corresponds to convergence elfecl 
due to nonlinear refraction o f  the beam.

2.2 D iffractionless propagation and  norm alised  self-trapping  
radius :

During the propagation o f  intense laser beam in nonlinear 
medium, d iffrac tion  effect continuously competes w ith 
focusing effect, governing the propagation characteristics o f 
the beam and its dynamics. We shall discuss here condition, 
under which an electromagnetic beam can produce its own 
dielectric wave-guide and propagate w ithout spreading. Such 
self-trapping or d iffraction less propagation in dielectric wave
guide mode appears to be possible fo r intense laser beams 
where dielectric constant increases w ith  fie ld  intensity o f 
beam. This phenomena o f  self-trapping can produce marked 
optical and physical effect.

Follow ing eq. (14), one can conclude that when the 
d iffraction divergence o f  laser beam is exactly balanced by 
the focusing effect in the medium due to d ifferent type o f 
nonlinear effect, the beam propagates in a self-trapped wave
guide mode w ithout convergence or divergence. Thus fo r an 
in itia l plane wave-front o f  the beam, at z = 0 , / =  I, as well

d f  1
as ^  = 0 and hence - r r -  0. This leads to a condition,dz dz^
where the terms in the righ t hand side o f  eq. (14) cancel each 
other. In this situation, the beam w idth o f  laser docs not 
change during the propagation in the nonlinear medium. In 
other words, the beam propagates w ithout convergence or 
divergence or in the self-trapped mode.

On applying these conditions in eq. (14), one obtains

1 C f ^ i X < E E * > )

If To fc r̂
= 0

£ niX< E E ' > )

But the propagation constant k  = s o  this equation
can be rewritten as

CDTo
-   ̂ (^ -  0 , / -  1). (15)

- ( < £ £ •  > ). (14)

2.3. Critical power :
The critica l power o f  beam Per is one o f  the important 
parameter in self-focusing problem. It  is defined as the 
m inimum  power o f  the incident beam fo r which the beam 
propagates in nonlinear medium w ithout converging or 
d iverging i.e. in uniform  wave-guide mode. In general, it is
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the minimum power of incident beam required to create a 
self-focused channel.

The critical power of beam in the nonlinear medium such 
as plasma, is given as [34]

rdr

8 L'O -ocr’ (16)

where Ê oct is square of the critical value of electric field 
amplitude and can be calculated using the self-trapping 
condition (15).

The eq. (16) show that the critical power depends on the 
size of the incident beam and critical value of electric field 
amplitude. Incident beam, above the critical power level may 
be trapped at any arbitrary diameter and not spread unless 
some instability and related phenomena forces it to do so.

3. Effective dielectric constant of the plasma in the 
presence of intense laser beam : ponderomotive 
nonlinearity
Let us consider that the ponderomotive nonlinearity in 
collisionless plasma is mainly responsible for nonlinear 
dielectric constant. It arises due to interaction of electron with 
the magnetic field of the propagating beam. This is considered 
here because the ponderomotive nonlinearity with relaxation 
time T/, z: 10"̂  to 10 ̂ ‘ sec, sets much quicker. The laser pulse 
of width r such that r > are sensitive only to the 
ponderomotive mechanism. In most of experiments conducted 
with high power laser, this condition r > is satisfied.

Following Anderson and Bonnedal [28], the nonlinear 
part of the dielectric constant of plasma for ponderomotive 
nonlinearity in the presence of intense laser beam can be 
written as

I . I j / n  ___ • I I
(17)

Here, |~ A ttN qC
m T is the plasma frequency is the

absence of the laser beam. Âo and e are density and charge 
of electron. The characteristic parameter a is given as

a  =
e^ M

= 1  l - e x p ^ - | ^ a £ ^ x p — ^

Combining cqs. (2) and (18), the general expression for the 
effective dielectric constant of plasma at z = 0  due to 
ponderomotive nonlinearity can be written as

ar„
£ =  \ ----- T + - T

(0" (O
J 3m „ 2  (

(19)

This expression of the effective dielectric constant will be 
used with self-focusing equation during analysis presented in 
Section 4.

Figure 1 where nonlinear part of dielectric constant due 
to ponderomotive force in plasma is plotted as a function of 
radial distance from the axis, shows a gradual decrease in the

8

I 5 -

0 5

Figure 1. Radial profile of nonlinear part of dielectric constant 
plasma for ponderomotive nonlinearity. Here ro == 30 ^m, » 0 S3,
lOp “  2.5 X 10*̂  rad/sec and ( o -  10x10*^ rad/sec.

nonlinear part of dielectric constant as one moves away from 
the axis in radially outward direction. This decrease is 
associated to plasma density inhomogeneity perceived by the 
transversely inhomogeneous wave field.

Following eq. (17), one can obtain

At the plasma-vacuum interface i.e. z = 0 ,/=  1, the nonlinear 
part of the dielectric constant of plasma, without use of 
Taylor series expansion is

(18)

-  _
■ oP-

x p { ^ a £ £ * }
(20)

It indicates that the nonlinear part of dielectric constant due 
to ponderomotive nonlinearity, shows a saturation behaviour 
as the beam intensity increases to a very high values. Laser 
beam intensity near the focal point will increase to high 
enough level which will be capable of displaying saturation
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efTects as shown in Figure 2 and value of nonlinear part of 
dielectric constant corresponding to beam intensity parameter 
is tabulated in Table 1.

“1----1~
7 a

'1
JO

Figure 2. Nonlinear part of dielectric constant variation with the 
beam intensity parameter for ponderomotivc nonlinearity in plasma.
„ 3ma 

AM

Table 1. Nonlinear part of the dielectric constant (£Kil) of plasma for 
pondcromotive nonlinearity for ditfcrent value of beam intensity (fiEl). 
(Op ^ 2 5 *  10'  ̂ rad/sec = 1 x 10'^ rad/sec and ro * 30 pm

«NL >0^PEl
(in arb Unit) 

1
2

3
4
5
6
7
8
9
10

3 95 
5 50
5 94
6 14 
621 
6 23 
6 25 
6 25
6.25
6.25

dz^

1 /
K^r^r f̂ K' r̂^p r‘

, .  . 3 n , a E S _ J  r^

The main feature of this equation is that it provides the 
beam width inside the plasma at any axial distance for any 
arbitrary cross section of incident beam. Hence, it can be used 
to obtain the entire spatial propagation characteristic of laser 
beam in plasma.

A numerical solution of this equation has been obtained 
for a typical sample plasma with the following parameters :

CO (frequency of incident beam) = 1 x 1 0 '  ̂ rad/sec, 
cop (plasma frequency) = 2.5 x 10’  ̂ rad/sec.
To (temperature of plasma) = 1 0  ̂ k,
To (initial size of laser beam) = 30 pm,
Ao (electron number density) “ 9.5 x 10̂  ̂ cm̂  ̂ and,

3 wipEl (initial intensity parameter) = = 0.55.

Runge-Kutta method is used to solve the differential eq. (21) 
with above listed value for different parameters. The results 
are shown in Figure 3 (curve A) and tabulated in Table 2. 
The variations of/with z demonstrate an oscillatory behaviour

4. Numerical results
The foregoing analysis of laser beam propagation in plasma 
has been used to obtain many important results. For 
pondcromotive nonlinearity, the value of effective dielectric 
constant from eq. (17) is substituted in the eq. (14) and 
resulting self-focusing equation is given as

Figure 3. Oscillatory behaviour of self focusing beam width parameter (/) 
with axial distance (z) for ponderomotive nonlinearity. Curve (A) for 
present entire spatial beam analysis (non paraxial) and curve (B) for 
paraxial method cj), == 2.5 x 10'  ̂ rad/sec, ry * 1 x 10*̂  rad/sec, “  0 55 
and ro * 30 pm

Table 2. Minimum value of beam width parameter (/mm) and corresponding 
axial position (Zmm) tor paraxial method and present non-paraxial 
analysis o)p ^ 2.5 * 10'  ̂ rad/sec, (o~  1 10*̂  rad/sec, PE^ “  0 55 and
T(, “  30 )im

(21)

It is a second order differential equation of dimensionless 
beam width parameter (self- focusing parameter) which is a 
function of both r and z.

Method First minima Second minima Third minima

yiiuii( t ) Zniifi( 1) cm yinm(2) 2niin(2)cm /min(3) Zimn(3) Cm

Present
non-paraxial
analysis

0.5036 0.082 0.5037 0 246 0.5037 0.410

Paraxial
method*

0.5074 0 034 0.5073 0.102 0.5078 0.169

‘Using Ref. [21]
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which indicates that during the popagation, the laser beam 
aperture in plasma first decreases and attaining the minimum 
value, it increases. This process repeats again and again 
providing oscillatory behaviour. Mathematically, these results 
shows that at z  ̂ 0 , value off=  1 and dfidz = 0 i e. the beam 
width has no initial divergence. With the increase in the value 
of z in the vacinity of z -  0 , dftdz becomes negative and /  
starts decreasing and its value becomes less than unity. The 
first two terms in the R.H.S. of eq. (21) decrease more rapidly 
than the third term. At z -  rmim/attains a minimum value 
' -̂/min 0.5036 for ẑ m = 0.082 (sec Table 2). At this point, 
axial intensity of the focused beam is considerably enhanced 
and thus d̂ fldẑ  becomes positive. Beyond z "" Zmm, dfidz 
takes positive value and thus J starts increasing. In Figure 3 
the results obtained from paraxial theory [2 1 ] are also 
represented as curve 5, for comparison. It is clear from 
Figure 3 that present theory predicts large value of self- 
focusing distance as compared to conventional paraxial 
theory which is also reflected in the higher value of ẑ .n in 
Table 2. Self-focusing parameters obtained by paraxial and 
our method are almost same, slightly less for present non- 
paraxial analysis.

In the analysis, incident axial symmetrical laser beam 
profile assumed to be Gaussian. For the different spatial 
position {ie. distance from the axis of propagating beam), 
self-focusing parameter (/) as a function of axial distance (z) 
in plasma has been numerically obtained and represented in 
Figure 4. Results indicate that the trajectories of rays emerging 
from differential spatial position In the Gaussian beam, are 
different from one another. Result obtained from paraxial 
method [2 1 ] employing same sample parameters, arc also 
shown in Figure 4. Careful study of Figure 4 shows that the

-----10 |jm
-  15 nm

—  P = l { ) \ i m

----- p  -  25
— ' p  -  30 îm
--------- PRX

0 0 \ 
n no

- |- I I -  r r  - !
0 02 0 1)4

Axial distance (z) cm

focal length of the paraxial part of the beam is smaller than 
the peripheral part, indicating aberration effect. In comparison 
to it, paraxial methods which arc valid only for self-focusing 
of near axis part of the beam, gives only one focal point [2 2 ].

Beam trapping without diffractional divergence is an 
important topic of self-focusing problem. According to 
present analysis, self-trapping condition for ponderomotive 
nonlinearity in plasma can be obtained by sbstituting eq. (18) 
in eq. (15). For spatial position r = p, the normalised self- 
trapped radius {coppic) becomes :

'b

f ,
1 -exp< -fiEo exp [ - 4 )1'

1 '0  >JJ
(22)

Using this relation, self-trapped radius has been calculated 
for different values of initial beam intensity parameter 
and different spatial beam positions. These results are 
represented in Figure 5 for normal self-trapping. Study of the 
plots in Figure 5 indicates that the paraxial portion of the 
spatial cross-section of the incident Gaussian beam 
corresponds to small trapping radius as compared to peripheral 
portion i.e. for higher value of p. In the lower power region, 
the vertical portion of the curves in Figure 5 shows that the 
self-trapping is possible for a certain value of beam power, 
known as critical power. It is different for paraxial and

- -  p  " 10 urn 
------- p -  20 nm
—  —  p=  30 [im

Figure 4. Axial dependence otbeam apcralurc (abiraiary units) lor diirercnl 
spatial distance {p) C'urxe 1 to 4 arc foi p  10 pm. 15 pm. 20 pm, 
25 pm and 30 pm respectively ru ^ 30 pm, 0)̂, * - 2 5 ^  10”  riid/scc, 
w -  I " Id” radAec

Figure 5. Normalised seir-lrapped radius of beam (Wpp/c) dependence 
on beam mtensily parameter for dilTcrcnl value of spatial
distance (/>)

peripheral portions of beam. Results also indicate that 
saturation behaviour starts for higher value of beam intensity 
for larger value of p. Calculated value of critical power from 
the present analysis [/’ci(Ml̂ K)] for different spatial position 
coordinates is given in Table 3. Results are compared with 
the paraxial method [2 1 ] and ratio of critical power from our
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method to the paraxial method is shown in the last column 
of this table. The intensity profile of the laser beam in the 
transverse direction will be modified due to induced 
inhomogeneity in plasma density or refractive index.

Table 3. Critical power (Pa) corresponding to difTerent spatial position of 
incident beam cross section considering ponderomotive nonlinearity in 
plasma and its ratio to paraxial method value eop = 25   ̂ 10'  ̂ rad/scc, 
(0 I 0 10’̂  rad/sec and ro ^ 30 pm

Sjpatial distance 
pm

Per
Kw

Critical power ratio 
PuiPu (paraxial)

10
15
20
25
30

279 27 
321 13 
390 53 
502,38 
683 77

I 00 
I 15 
1 40 
1 80 
2.46

•Using Ref [21]

S. Discussion
The key idea of our approach to self-focusing problem is not 
to involve Taylor series or any kind of power series expansion 
for dielectric constant as usually done in many paraxial 
analysis [35]. Hence, the results of the present analysis are 
not confined to only near axis parts of the beam but deals 
with entire spatial propagation characteristic of assumed 
intense Gaussian laser beam.

Observed oscillatory behaviour of beam aperture during 
the propagation of laser beam in nonlinear plasma medium 
in axial ‘direction may be due to the fact that in the vacinity 
of plasma vacuum interface i.e. z = 0 , with the increasing 
value of z, diffraction divergence decreases more rapidly than 
nonlinearity based convergence or focusing effect and 
consequently, beam aperture decreases. Due to continuous 
decrease in beam aperture, at particular value of 2 m̂ini 
intensity of the beam is considerably enhanced and diffraction 
divergence starts dominating over focusing convergence 
effect. Thus after attaining the minimum value, beam aperture 
starts increasing beyond Zmm  ̂^ -mm- After propagation 
of certain length, beam aperture decreases to a value where 
focusing effect starts dominating the defocusing diffraction 
effect and beam aperture starts decreasing again. Because of 
these two diffraction and nonlinearity related self focusing 
effects and their dominance over one another during the 
propagation of laser beam in axial direction, medium acts as 
an oscillatory wave-guide.

Results shown in Figure 4, represent strong aberrational 
eff ect in the self focusing behaviour when entire spatial beam 
is considered in’the analysis. In the paraxial method, after the 
Taylor series expansion only abcrrationless parts in the 
nonlinear refraction force, which are quadratic in the 
coordinate r, are retained. Hence, such methods predicts only

one focus for the self-focusing. The aberrationless 
approximation is valid only for self focusing behaviour of 
near axis parts of the beam far from the realistic situation. 
Present analysis indicates that under axial symmetry, a 
structure of circular zones arises similar to that caused by 
spherical aberration of ordinary lenses. This spherical 
aberration, which appears to be inherent in self-focusing, may 
lead to deviations from axial symmetry, similar to the 
astigmatism of ordinary lenses.

The beam critical power Pa is one of the important 
parameter in self-focusing and self-trapping problem. Results 
of present analysis presented in Table 3, show very interesting 
behaviour for critical power. For the near axis region where 
spatial distances p  = 1 0  pm, the value of critical power for 
the plasma medium of specific parameters (used in the 
present numerical analysis) is 279.27 Kw and it compares 
well with the value 278.5 Kw obtained using paraxial method 
of Sodha et al [34]. As one moves away from the axial region 
for larger value of p, value of critical power increases (see 
Table 3). When p = ro 30 pm (initial size of the Gaussian 
beam at plasma-vacuum interface), the critical power is 
683.77 Kw, very large compared to paraxial method i.e. 2.46 
times large. Tt is pointed out by various workers that the 
critical power calculated by aberration-less paraxial 
approximation is always three to four time less because the 
effects of nonlinear refraction are over-estimated here (5). 
Various correction had been suggested to overcome such 
problems associated with the paraxial methods. Central to the 
corrected paraxial approximation is to account for the plasma 
■density or refractive index correction (in space) with the 
electromagnetic wave since both are transversely 
inhomogeneous. For laser beam in the transverse direction, 
the nonlinear dielectric inhomogeneity perceived by the wave 
cannot be approximated using simple Taylor expansion in the 
transverse cylinderical coordinate r. This is the reason why 
the paraxial theories fail in predicting the correct value of 
critical power and other important parameters related to self- 
focusing. Methods based on the invariants of nonlinear 
Schrdndinger equation (NLSE) such as moment method 
originally developed by Vlasov et al [24] and later generalised 
by Lam et al [26] as well as variation method of Anderson 
and Bonnedab [28] has proved to be quite useful in estimating 
the self-focusing effect. These methods are supposed to be 
equivalent to a corrected paraxial theory because they 
intrinsically take care of the approximations. The fact that the 
value of critical power predicted by the present analysis is 
reasonably consistent with the values estimated by moments, 
variational theory and numerical calculations, makes the 
present analysis additionally useful.



552 R  K  K h a n n a  a n d  R  C  C h o u h a n

Variation of dimensionless normalised self-trapped 
radius (ufpTo/c) with is given in Figure 6 using eq. (22).

h- ;

A
B
C

Figure 6. Dependence of' normalLscd beam radius {co r̂dC') on incident 
beam intensity parameter Curve A tor present analysis. Curve B
for variational method and Curve C for paraxial ray method ro = 30 pm

The self-trapped radius for pondcromotive nonlinearity in 
plasma due to variational method is given as [27]

Ct)pf'o

vanalional E ( f l E ^ ) ^ t x p ( - f i E l , ) - \
(23)

where £(jc) is a standard exponential integral and given as 

I -  exp(~.v)r
Jo

^dy.

However from paraxial approximation method, self-trapped 
radius is [21]

cxp(yfl£uV2)
(24)

paraxial 1 ^ )

Self-trapped beam radius employing eqs. (23) and (24) with 
beam intensity, has also been plotted for variational as well 
as for paraxial theory in Figure 6 (curves B and C respectively).

The saturation behaviour of the trapped radius or the 
nonlinearity in the high intensity region is an important 
phenomenon for self-trapping process. Results in Figure 6 
clearly show that the present analysis gives much flatter curve 
in the saturation region as compared to paraxial method. 
Observed behaviour demonstrates almost same dependence 
as that follows from the variational method. Such type of 
variation is physically expected for self-trapped beam because 
under self-trapped condition, the plasma is completely expelled 
from the beam region and beam drills a ‘clear hole’ in plasma. 
Laser photons propagate freely down the empty pipe formed 
by this cavity in the plasma. Thus, the radius of photon pipe 
should be nearly independent of the intensity or power of 
beam, as predicted by the present analysis.

Finally, the results of our analysis and comparison with 
paraxial ray approximation as well as with the method of 
moments and variational theory demonstrates its advantages. 
It successfully provides a qualitative description of the beam 
characteristics in the nonlinear media in a more accurate way 
as compared to many popular paraxial ray methods.
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